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Abstract

A good statistical graph for a randomized experiment simultaneously conveys the
study’s design, analysis, and results. It reveals the experimental design by mapping
design elements to aesthetic parameters. It illuminates the analysis by plotting the
statistical model in “data-space.” When the design and analysis of an experiment are
encoded in a plot, the interpretation of the experimental results is clarified. “Analyze
as you randomize” is a dictum attributed to Fisher that guides interpretations of
experimental data. This chapter extends that principle to visualizations of random-
ized experiments. While not every experiment requires a visualization, those that do
should be visualized in ways that communicate the design and results together.

The purpose of this chapter is to offer a
perspective on how to construct statistical
graphs for randomized experiments specif-
ically. Many books and articles provide
guidance (Chambers et al. 1983; Tufte
1983), inspiration (Lupi and Posavec 2016;
W. E. B. Du Bois Center 2018), or technical
instruction (Healy 2018; Wickham 2016) for
statistical graphs in general. Quite a bit of the
data visualization literature is concerned with
exploratory data analysis, owing in large part
to John Tukey’s magnum opus, Exploratory
Data Analysis (Tukey 1977), which provides
procedures for exploring data sets graphically
and largely without the aid of computers.
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The virtues of visualization for exploring
data sets for new discoveries have been noted
for a long time (e.g., Fisher 1923, p. 25). In
experiments, however, the research question
to be answered usually flows directly from
the design and so does not typically need
to be “discovered” through visualization.
Indeed, Tukey himself grants that exploratory
data analysis is less useful for randomized
experiments (Tukey 1977, p. 3). Here, we
are not using graphs for exploration; instead,
we are using them to reveal experimental
design. Much of the common advice about
statistical graphs (e.g., “Above all else, show
the data” (Tufte 1983) and “Use simplicity
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in design” (Gordon and Finch 2015)) carries
over directly, so in this chapter, I will focus on
what is special about graphs for randomized
experiments.

The major reason to consider graphs for
randomized experiments separately from
other visualizations is experimental design.
Compared with other kinds of studies that
seek to measure causal effects, the distin-
guishing feature of randomized experiments
is that the core analytic assumptions can
in large part be justified by design, rather
than by argument or conjecture. The design-
based tradition in the analysis of experiments
starts from the design features that are
under the researcher’s control (who the units
are, how the treatment was assigned, how
the treatment was delivered, and how the
outcomes were measured) and seeks to extract
causal inferences while adding a minimum of
additional statistical modeling assumptions.

In this chapter, I argue that the visual
display of experimental data should follow
in the design-based tradition by striving
to illuminate experimental design. First,
I review the distinctions between design-
and model-based descriptive and causal
inference. To make explicit what parts of an
experimental design a graph can reveal, I rely
on the “MIDA” framework for characterizing
research designs offered in Blair et al.
(2019) and described in brief below. After
introducing a minimum of visualization
theory, I offer three practical guidelines for
graph construction. The chapter concludes
with a series of examples that do and do not
follow those guidelines.

17.1 Design- and Model-Based
Inference, Briefly

The phrase “design-based” has its roots in
the survey sampling literature, the main con-
cern of which is drawing descriptive infer-
ences about a population on the basis of a
sample. Design-based inference is rooted in
the known properties of the sampling proce-
dure: its strata, clusters, and inclusion prob-
abilities. By contrast, model-based statistical
inference admits that sometimes the data that

have arrived on the analyst’s desk did not
do so as the result of an explicit sampling
procedure — or even if they did, the goal is
to make inferences about a population other
than the one from which from the sample was
drawn. In order to extract inferences about
a population on the basis of such a sam-
ple, we need to model the process by which
the data arose. The description of the two
traditions I have given here is necessarily
schematic; for lucid discussions of finer dis-
tinctions between model- and design-based
inference for descriptive quantities, see Little
(2004) and Sterba (2009).

The distinction between model-based
and design-based inference carries over into
causal inference as well. In causal inference,
the phrase “design-based” can refer to the
idea that the only source of stochasticity in
an experiment is the random assignment.
Randomization inference is design-based
in this sense (Bowers et al. 2013; Gerber
and Green 2012; Keele et al. 2012). It is a
procedure for conducting hypothesis tests
in which the null distribution of a test
statistic is explicitly constructed using the
set of random assignments to conditions
that could have occurred according to the
experimental design. In Fisher’s classic tea-
tasting experiment (Fisher 1935, p. 13),
a subject (Dr. Muriel Bristol, a biologist
working with Fisher at the Rothamsted
Experimental Station) made guesses about
whether the tea or the milk was added
first to eight cups of tea. According to the
experimental design, exactly four of the
eight cups of tea were assigned to milk first
instead of tea first. Fisher simulates the null
distribution of the “number correct” test
statistic by imagining all (i) = 70 ways the
milk and tea could have been allocated. He
obtains a p-value by comparing the number
of cups the subject correctly classified to
the null distribution. This p-value does not
require any of the extra assumptions required
for other hypothesis-testing procedures (e.g.,
the assumption that, under the null, the
test statistic follows an abstract distribution
like the ¢, F, normal, or x*> distribution).
Beyond keeping modeling assumptions
to a minimum, this procedure merits the
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name “design-based” because it explicitly
incorporates the design information that
exactly four of eight cups were treated, not
two or six.

More loosely, “design-based” can also
mean that the core assumptions undergirding
experimental inference — random assignment,
excludability, and noninterference (Gerber
and Green 2012, ch. 2) - are justified
by qualitative knowledge of what actually
happened in the course of the experiment.
We justify the assumption of random
assignment on the basis of direct knowledge
of assignment mechanism such as the
computer script or physical process according
to which units were assigned to conditions.
We justify excludability by maintaining
parallelism in our measurement strategy
and designing the treatment to target the
relevant theoretical quantity. We justify
noninterference by sampling subjects who
are far apart from one another in physical and
social space. This sense of “design-based”
is broader. In this tradition, we root our
statistical assumptions in the experimental
design and - to the extent possible — refrain
from adding extra assumptions.

As an example of model-based analysis of
randomized experiments, consider mediation
analysis, which is the study of how treat-
ment effects are transmitted through inter-
mediate variables. Consistent estimation of
mediation estimands typically requires the
additional modeling assumption of sequential
ignorability (see Imai et al. 2011 and Chapter
14 in this volume). Under sequential ignor-
ability, the value of the mediator is assumed
to be as-if randomly assigned within each
randomly assigned treatment group, possibly
after statistical adjustment. This assumption
cannot typically be justified on a design basis
and has to be asserted on other grounds that
may or may not be convincing to a skep-
tic (Bullock and Ha 2011). In response to
this difficulty, some design-based approaches
have been proposed to target mediation esti-
mands while invoking different assumptions
(Acharya et al. 2018; Acharya, Blackwell, and
Sen 2018; Imai et al. 2013). Other areas in
which model-based analysis of experiments
is common include addressing attrition and

generalizing results to populations outside
of the experiment.

17.2 Components of Experimental
Designs

To structure the discussion of what com-
ponents of an experimental design can be
visualized, we need to describe what the
components of a design are in the first
place. In Blair et al. (2019), my colleagues
and I offer the “MIDA” framework to
characterize research designs. Under that
view, an empirical research design consists
of four elements: a model, an inquiry, a data
strategy, and an answer strategy.

Even when operating in the design-based
mode, researchers must rely on a theoretical
causal model. These theoretical models
inform, but are distinct from, the statistical
models described in the previous section. The
theoretical model M represents researcher
beliefs about the relevant set of exoge-
nous and endogenous variables and their
interrelations. For experiments, this usually
constitutes researcher beliefs about potential
outcomes (how many there are and their
distributions).

"To fix ideas, consider a two-arm canvassing
experiment in which the treatment is a visit
from a canvasser making a persuasive appeal
to vote for their candidate. In this setting, the
theoretical model includes researcher beliefs
that each subject only has two potential
outcomes (a treated potential outcome
and an untreated potential outcome); that
the potential outcomes are in a latent
probability space; that, on average, the
treatment raises subjects’ latent probability
of supporting the advertising candidate by,
for example, 10 percentage points; and
that realized outcomes are binary. This
model implicitly includes a noninterference
assumption that the outcome expressed by
a unit depends only on its own treatment
assighment and not on the assignments of
other units.

The inquiry I is a question about the
theoretical model. In experiments, a common
inquiry is the average treatment effect
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(ATE), defined as the average difference
between treated and untreated potential
outcomes. There is a tight relationship
between inquiries and models. Suppose that,
contrary to the noninterference assumption,
the outcome expressed by a unit does depend
on whether other units are treated, such as
whether neighbors talk among themselves
about the canvassing visit. In such cases,
subjects each have more than two potential
outcomes. Even more worrying than bias in
our estimates of the ATE is the fact that the
very definition of the ATE falls apart because
none of the possible potential outcomes
can be called “the” treated or untreated
potential outcome. If the model changes,
then so too must the inquiry. For example,
one might redefine the inquiry to be the
average difference between being treated
versus untreated when all other units are
untreated.

The data strategy D is what the researcher
does in the world to produce a real data set
d. It includes how subjects are brought into
the experiment, how they are assigned to
treatments, and how outcomes are measured.
In our two-arm trial, we might obtain a
convenience sample of 500 voters from a
proprietary contact list, assign exactly 100
(due to budget or logistical constraints) of
them to treatment using complete random
assignment, and then use survey data to
measure vote intentions. The answer strategy
A is the set of statistical procedures we use to
generate an answer # using the realized data
set. For example, we might use a difference-
in-means estimator of the ATE with a
t-test for assessing statistical significance.
Experimental designs are rarely as simple as
two-arm, one-outcome experiments in which
the ATE is estimated via difference-in-means,
but designs of far greater complexity can
usually be straightforwardly characterized in
terms of M, I, D, and A as well.

What does it mean for a visualization to
reveal the experimental design? The model
and the inquiry are imaginary theoretical
constructs. The data and answer strategies
themselves are procedures that researchers
follow. All four features of a design, therefore,
are difficult to show in a plot, because

imaginary constructs and abstract procedures
are hard to represent graphically. Graphs can
present the realization of the data and answer
strategies in ways that illuminate the model
and the inquiry. The data strategy D produces
data d. The answer strategy 4 uses data d to
produce answer # to inquiry I, which is itself
a question about model M. The goal of a
design-based statistical graph, therefore, is to
visualize 4 and # in ways that communicate
essential features of M, I, D, and A.

17.3 The Semiology and Grammar of
Graphics

This section briefly introduces some
visualization theory that we need in order
to talk about how a graph could successfully
communicate experimental design. I will be
leaning heavily on a strand of theory that
begins with Bertin’s “semiology” of graphics
(Bertin 1967), runs through Wilkinson’s
“grammar” of graphics (Wilkinson 2006),
and ends with Wickham’s development and
implementation of the grammar (Wickham
2008, 2016). Bertin’s semiology of graphs
rests on the idea that the visual signs displayed
in a figure encode meaning via a mapping
from data to aesthetic attributes such as
position, size, shape, orientation, brightness,
color, and texture. Wilkinson’s grammar
provides rules according to which the graphs
can first be expressed as mathematical objects
and can then be projected into a coordinate
system. For example, bar charts and pie
charts can represent the same mathematical
object (the frequency distribution of a
categorical variable) in different coordinate
systems (Cartesian or polar). The grammar of
graphics can be contrasted with a “pen-and-
paper” metaphor for creating graphs. With
pen and paper, visual elements can be placed
on the page in ad hoc ways that follow no rules
at all, leading to chartjunk and misleading
figures (Tufte 1983).

The implication of the semiology and
grammar of graphics for the visualization of
randomized experiments is that we should
map experimental design parameters to
aesthetic attributes. For example, we might
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map the randomized treatment variable to
the horizontal axis and the realized outcome
variable to the vertical axis. Blocking variables
are pretreatment characteristics that describe
subsets of subjects among whom separate
complete random assignment procedures are
carried out. The blocking variable might be
mapped to the “facet” aesthetic that controls
how the figure will be broken into small
multiples. In clustered experiments, whole
groups of units are assigned to treatment
conditions together. We can map the number
of units in each cluster to the aesthetic
parameter governing the size of each point.
These are all examples of how to express
elements of a data strategy in graphical form.

Expressing the answer strategy on a graph
is trickier, and to see why, we will adopt the
language used by Wickham and coauthors
(Wickham 2008; Wickham et al. 2015) to
contrast “model-in-data-space” with “data-
in-model-space.” The word “model” refers
here to the statistical model that forms the
answer strategy. First and foremost, statis-
tical models applied to data produce data
summaries.” To summarize the bivariate rela-
tionship between two variables X and ¥, we
often turn to linear regression models that
“summarize” ¥ by providing a guess of the
conditional mean of ¥ at each value of X.
It is easy to show this model in data-space.
We map the X variable to the horizontal axis
and the Y variable to the vertical axis, then
we overlay the statistical summary (the linear
regression fit) on a scatterplot of 1" versus X.
"This plot is an example of showing the model
in data-space.

Showing multiple regression is tougher.
Suppose we estimate a regression of the form
Y = Bo+ B:X1,i+ 8. X, i + €. We could show
a three-dimensional scatterplot with the two-
dimensional plane described by B, B1,and B,
passing through the points, but static three-
dimensional plots are difficult to represent

1 See also Gelman (2004), who proposes visualizations
of the posterior predictive distribution as a form
of model checking. In that setting, the statistical
model does more than just summarize the data at
hand; it represents a model that could generate new
data. Visualizing the posterior predictive distribution
is a forceful example of projecting the model into
data-space.

on fundamentally flat pages and screens. An
alternative is a “res-res” plot (Tukey 1977,
ch. 13), in which we estimate two additional
regression equations (¥; = ao + o X,; +
v; and Xl,i = Yo + VIXz,i + 77i) and PlOt
the residuals from each regression against
one another. The best linear summary of the
bivariate relationship between the residuals
Y; =Y — (do + dIXz,i) and Xf’,' = A1 —
(Yo + 71X,,;) will be exactly the estimate EI
obtained from the multiple regression, and a
line with this slope can be overlaid, as before,
on the residualized data. Notice, however,
that taking residuals is a model-based trans-
formation of the data. The res-res plot is an
example of showing the data in model-space.

More generally speaking, answer strate-
gies for experiments all have in common that
they compare units across randomly formed
groups, not within them. For example, the
difference-in-means estimator of the ATE is
built by constructing estimates of the aver-
age treated and untreated potential outcomes
out of the realized outcomes expressed in
the treatment and control groups, respec-
tively. The ordinary least squares estimator of
the ATE does something very similar, but it
compares covariate-adjusted estimates of the
average treated and untreated potential out-
comes.” Plotting these statistical models in
data-space usually means overlaying the data
with estimates of average potential outcomes.

Plotting the actual treatment effect
estimates in data-space is difficult, since
treatment effects themselves exist only in
model-space and not data-space. Because
of the Fundamental Problem of Causal
Inference (Holland 1986), we cannot
directly measure treatment effects, let alone
record them in a data set to be visualized.
Experimentalists are often in the position of
needing to summarize many treatment effect
estimates (as in a meta-analysis) or to give
descriptive comparisons of treatment effect
estimates by subgroups (as in an analysis of
treatment effect heterogeneity). Treatment
effect estimates can be displayed in a dizzying

2 For an illuminating discussion of covariate adjust-
ment in randomized experiments, see Lin (2013),
especially section 3.
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array of formats such as coefficient plots,
funnel plots (Light and Pillemer 1984, p. 63),
“enhanced” bar plots (Berry and Hauenstein
2017), or scatterplots of original study
estimates versus replication study estimates
(e.g., Open Science Collaboration 2013,
figure 3). These plot formats are not design-
based in the sense discussed here. The fact
that such plots are not design-based is no
criticism; their purpose is often to describe
the distribution of a special kind of quantity
(causal effects) across many experiments or
treatment arms.

17.4 Practical Guidance

The above discussion is somewhat abstract.
When trying to apply the design-based
approach to my own graphs or when trying
to put my finger on what it is that bothers me
about others’ graphs, I have ambled toward
three general guidelines.

First, invite visual comparisons across
randomly formed groups, not across groups formed
pre- or post-treatment. The major distinguish-
ing feature of an experiment is that the causal
agent under study was randomly allocated;
graphs should emphasize this special design
feature. Pretreatment covariates are not ran-
domly assigned, so we should not emphasize
comparisons across different values of the
covariates. Post-treatment variables are also
not randomly assigned. Worse, they are
possibly affected by treatment, so comparing
units on the basis of post-treatment variables
is usually misleading (this is the graphical
analogue of post-treatment bias). Graphs
typically “invite comparison” by placing
units or groups of units closely adjacent
to each other in visual space. Randomly
formed groups should therefore be kept close
to one another and non-randomly formed
groups should be separated. Separation can
be achieved in a number of different ways,
including faceting, differentiating groups
with color or shape, or connecting randomly
assigned comparisons within nonrandomly
assigned groups with lines. Section 17.5.2
offers an illustration of this guideline in the
context of a block-randomized experiment.

Second, show the fitted statistical model
(with uncertainty estimates) in data-space.
Following this guideline usually means
plotting the data first and laying the statistical
model over the data second. Sometimes
this means plotting the predictions of the
model and not the parameters of the model.
Showing uncertainty on a graph can often
help communicate important scientific
distinctions, such as the distinction between
statistical and  substantive significance.
Showing the model in this way also points
out to the viewer that it is our inferences that
are uncertain, not the data themselves. When
statistical models are visualized alone (i.e.,
without the underlying data), viewers can be
tempted to believe the model is true even
when it is not. When the model is shown
with the data, models can be shown to be
false while nevertheless serving as useful data
summaries. Section 17.5.5 demonstrates this
guideline when visualizing the interaction of
a treatment with a continuous covariate.

Third, wse visual cues like color, shape,
diameter;, transpavency, and facets to reveal
design  features like blocking, clustering, or
differential probabilities of assignment. Most
experiments are not simple two-arm trials
with equal probabilities of assignment and a
single outcome. The idiosyncratic features
of an experiment should be expressed by
the visualization. To the extent possible, the
graph should highlight what happened in the
experiment. If groups of units are assigned
to treatment as a cluster, the cluster-level
outcomes can be represented by points whose
diameters are proportional to cluster size
(this case is demonstrated in Section 17.5.3).
If some units have higher probabilities of
assignment than others, the answer strategy
will have to account for this design feature.
Graphs should account for it as well, possibly
by mapping the inverse probability weight to
the size or transparency of the point. These
visual cues are not just decoration — they
point out to the viewer what is special about
the specific experiment being visualized.

These guidelines are not hard-and-fast
rules. In some settings, they may even
be in tension with one another because
emphasizing one design feature may come at
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the cost of obscuring another. Disregarding
the first guideline might be appropriate in
settings in which the descriptive differences
between nonrandomly formed groups are
in fact of greater theoretical interest than
causal differences across randomly formed
groups. See, for example, Kahn (2017),
where the baseline differences in behavior
between men and women rightly (in my
opinion) receive greater attention than
the experimentally induced differences in
behavior. In my own work on political
persuasion, I connect treatment and control
subgroup averages with parallel lines to
indicate how subgroups of subjects are
“persuaded in parallel.” Since the (relative)
lack of treatment effect heterogeneity is
of major theoretical importance in that
work, the graphs emphasize the comparison
across pretreatment covariates like partisan
identification as much as the comparison
of treatment to control, in clear violation
of the first guideline. The second guideline
nudges graph designers to overlay their data
summaries on the raw data. But when N
is large, plotting each individual data point
can be impractical. In such cases, binned
summaries (averages of small subsets of the
raw data) can serve a similar purpose. Any
of three guidelines might be inapplicable
in a particular setting. In general, though,
how a graph should be constructed will
depend on the specifics of the design (i.e.,
the specifics of M, I, D, and A). Randomized
experiments generally share many design
features in common, so to the extent a
given experiment is similar to the sorts of
experiments I describe here, the guidelines
will be more applicable.

17.5 Example Figures

This section provides examples of strong
and weak statistical graphs for randomized
experiments. As described in Healy (2018),
data visualization advice is often doled out
in a “parade of horribles” format, wherein
examples of bad graphs are condemned
and good graphs are lauded. This more-
or-less Manichaean approach emphasizes

some graphical features over others. Healy
describes three dimensions of visualizations
that invite criticism: the aesthetic, the
perceptual, and the substantive. I will leave
both questions of aesthetics and questions
of perception unexplored here. As much
as I would like to, I cannot impose my
aesthetic tastes on others. I also do not
have evidence confirming that my preferred
formats actually cause viewers’ understanding
of experimental designs to improve, though
conducting perception experiments in the
tradition of Cleveland and McGill (1984)
would certainly be feasible. Here, the
attention paid to the bad graphs will focus
on the substantive design features they
misrepresent or fail to communicate. In the
examples that follow, all data are fabricated
using the R package DeclareDesign (Blair
etal. 2018) and visualized using the ggplot2
(Wickham 2016) implementation of the
grammar of graphics.3 In this way, the only
“horribles” that are paraded are graphs of my
own construction and I can be sure of the
design parameters that the graphs are meant
to communicate.

17.5.1 Two-Arm Trial

Figure 17.1 takes up the two-arm canvassing
experiment example from above. Specifically,
imagine a 5oo-person experiment in which
exactly 100 units are treated and the outcome
is binary. Figure 17.1a shows data 4 in a
way that recalls data strategy D. The points
are distinguished on the horizontal axis
according to the realized random assignment.
The vertical axis shows the range of the
outcome variable and the jittered point
clouds remind the viewer that the outcome
is binary and offer a sense of the number of
units in each condition. The plot also shows
pieces of the answer # in a way that recalls
answer strategy A. The two group means
form the constituent parts of the difference-
in-means estimator. The visual comparison
of the two group means references the

3 The programs and data sets used to construct all
figures are available on Dataverse at https://doi.org/
10.7910/DVN/VEGVSR. Equivalent Stata code for
Figure 17.1 is also provided.
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Figure 17.1 ATE simulated two-arm trial. Panel (a) communicates many features of the experimental

design, while panel (b) does not.

inquiry I (the ATE), defined in terms of
the model M that presumes noninterference
and a mapping from latent probabilities to
binary measured outcomes. Another virtue of
Figure 17.12a is that it displays the uncertainty
estimates in the form of 95% confidence
intervals for each group mean.

By contrast, Figure 17.1b communicates
far less. It only displays two numbers that
could be represented just as well in text with
no figure at all. Figure 17.1b does not remind
the viewer of any important features of the
data strategy such as the sample size, the
distribution of the outcome variable, or the
fraction of units assigned to treatment. It does
show some part of the answer strategy (the
group means), but it leaves out any measures
of uncertainty. In summary, Figure 17.1a fol-
lows the second guideline by showing the
model and uncertainty in data-space, while
Figure 17.1b does not.

17.5.2 Blocked Experiments

In block random assignment, complete
random assignment is carried out within
separate subgroups of subjects according
to their pretreatment covariates. Blocking
typically reduces sampling variability relative
to complete random assignment and can

be seen as a form of covariate adjustment
by design. Increasing precision is usually
the main reason to block, though logistical
constraints may also require some form
of blocking. An additional justification for
blocking that is sometimes given is the search
for treatment effect heterogeneity, on the
logic that blocking increases the credibility of
heterogeneity analyses. Such analyses by no
means require block random assignment and
can be carried out whether the assignment
procedure is simple, complete, blocked, or
otherwise. However, blocking on a variable
is credible evidence that the researchers
thought the variable was important ex ante
and that it was not “discovered” through an
unprincipled specification search.

For this example, imagine an experiment
conducted in two neighborhoods. The first
neighborhood has 5o residents and the
second has 100. For logistical reasons, the
experimental partner needs to treat exactly
25 residents in each neighborhood. This data
strategy induces differential probabilities of
assignment. The probability of treatment
is higher in the first neighborhood than
the second, which could cause bias in the
unadjusted difference-in-means estimator.
The answer strategy must account for
the probabilities of assignment somehow.



328 Alexander Coppock

QOutcome variable: count of some behavior

Qutcome variable: count of some behavior

Corlnrol Treat'ment

(a) Point size is proportional to the inverse probability
weights and weighted means are plotted
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yielding a biased comparison of group averages

Figure 17.2 A simulated block-randomized experiment. Panel (a) incorporates the differential probabil-
ities of assignment induced by the blocking, while panel (b) does not.

Approaches include conditioning on blocks
via a stratified estimator, controlling for
blocks in a regression setting, or weighting
units by the inverse of the probability of being
in the treatment condition to which they were
assigned. The outcome is a count of some
behavioral outcome over the course of the
experiment, which varies by neighborhood
and by treatment condition.

Figure 17.2 shows two visualizations of
the blocked experiment. In Figure 17.2a, the
diameters of the points representing residents
are proportional to the inverse probability
weights. Additionally, the weighted group
means are overlaid. The visualization in
Figure 17.2b ignores the differential prob-
abilities of assignment altogether: the points
are all the same size and the unweighted
group means are plotted. In this cooked-up
example, the correct analysis shows that the
ATE estimate is large and negative whereas
the incorrect analysis estimates the ATE
to be close to zero. Incorporating design
information into the estimation of treatment
effects is obviously important, and Figure
17.2 shows that it is equally important to
include such information in visualizations.

Next, we consider treatment effect
heterogeneity by block. Both panels of

Figure 17.3 follow the design guidance given
in Figure 17.1. The panels differ, however,
by the variable that creates the facets. In
Figure 17.3a, we facet by block. Within
each facet, the groups that are compared
are formed by random assignment: we see
small effects of treatment in neighborhood
1 and large negative effects of treatment in
neighborhood 2. By contrast, in Figure 17.3b,
we facet by randomly assigned group, so we
compare across schools and within treatment
group. Figure 17.3a follows the first piece
of graphical design advice — invite visual
comparisons across randomly formed groups, not
across groups formed pre- or post-treatment —
while Figure 17.3b does not. The reasons to
prefer Figure 17.3a in blocked settings carry
over immediately to any search for treatment
effect heterogeneity by pretreatment covari-
ates, regardless of whether the covariates
were used to create blocks.

17.5.3 Clustered Experiments

In cluster-randomized trials, whole groups of
subjects are assigned to treatment conditions
together. Clustering causes some inferential
problems - it decreases precision and
can even induce bias in standard analytic
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Figure 17.3 The same simulated block-randomized experiment. Panel (a) compares across the randomly

assigned partitions, while panel (b) does not.

procedures (Imai et al. 2009; Middleton
2008). Clustering should usually be avoided
where possible, but sometimes logistical,
budget, or theoretical constraints require
treatments to be allocated at the cluster level.
A prototypical example is the classroom-level
experiment. Because whole classrooms of
students receive instruction together, educa-
tion interventions are often implemented
at the classroom level and outcomes are
measured at the student level. In this example,
we imagine a “test-prep” treatment that is
randomly assigned to some classrooms but
not to others; the outcome is measured
on a 4oo-1600-point scale. The analysis
must account for the clustering, either
by using clustered standard errors or by
aggregating outcomes to the cluster-level and
weighting the difference-in-means estimator
by cluster size.

Two ways of plotting the data and
summaries from this experiment are shown
in Figure 17.4. Figure 17.42 plots cluster
means with diameters proportional to the
cluster size. The weighted means are plotted
along with 95% confidence intervals that are
calculated accounting for clustering. The
main virtue of this visualization is that
it insists on the clustered randomization
procedure. By contrast, Figure 17.4b does not

communicate the randomization procedure
because it falsely gives the impression that all
of the individual points are independent.
While the group means are the same in
both panels, the 95% confidence intervals in
Figure 17.4b were constructed ignoring the
clustering. As a rule, if the answer strategy
requires clustering in order to obtain good
variance estimates, the visualization should
somehow communicate clustering as well.

17.5.4 Covariate Adjustment

Experimentalists often include pretreatment
covariates in their statistical models to
increase the precision of their estimates.
Gerber and Green (2012, ch. 4) draw a
connection between covariate adjustment
and differencing off a pretest score that
provides a nice intuition for why covariate
adjustment helps to increase precision.
Differencing off the pretest score removes
a large portion of the idiosyncratic variation
in the post-test score; it is also equivalent
to serting the regression coefficient on the
covariate to 1. If adjustment is carried out
using regression, the coefficient is instead
chosen by the model fitting algorithm, which
tends to offer larger precision gains than
differencing.



330 Alexander Coppock

1600 4

1200

800 1

Outcome variable: classroom average SAT score
1 ]

Outcome variable: SAT score

Corlnrol Trea{ment

(a) Cluster means are plotted, with pointsize proportional

to size

1600 1

1200 1

800 1

4001

Corlnrol Treatlment

(b) Individuals are plotted

Figure 17.4 A simulated cluster-randomized experiment. Panel (a) emphasizes the cluster-randomized
design and displays confidence intervals that account for clustering, while panel (b) does neither.

Similarly, visualization can help convey to
viewers how the answer strategy (regression)
sharpens estimates. One way to do this is
to present the unadjusted and adjusted data
side by side, as shown in Figure 17.5. In
the “unadjusted” facet, the data are plotted
with the unadjusted regression line plotted
on top. The adjusted plot is a res-res plot
(discussed above) in which both the outcome
variable and the treatment variable have been
residualized by the pretreatment covariates.
Here, 1 use the procedure recommended
in Lin (2013) to adjust each treatment arm
separately, equivalent to interacting the
covariates with the treatment indicator and
then predicting the average outcome in each
treatment condition. In order to clearly
see the variance reduction from covariate
adjustment, the vertical scale of both facets
(but not their range) is set to be the same.
‘Typically, this scale must be set manually,
since most visualization software will alter
the scale to fit the range of the data. A
common piece of advice for experimentalists
is to present treatment effect estimates with
and without covariate adjustment side by
side in a regression table so that readers can
appreciate the work that covariate adjustment
is doing for the analysis. Figure 17.5 is
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Figure 17.5 Covariate adjustment. The contrast
between the two facets shows how the adjustment
increases statistical precision.

the graphical analogue of that side-by-side

comparison.

17.5.5 Interactions with a Continuous
Covariate

Another way to incorporate covariates
into experimental analysis is to estimate
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Figure 17.6 Simulated experiment with a continuous pretreatment covariate. Both panels represent the
same statistical model, but panel (a) plots the model and data together in data-space, while panel (b) plots

the model only in model-space.

conditional  average treatment effects
(CATEs). Figure 17.3a shows one way to
visualize CATEs when the “condition” is a
categorical pretreatment covariate. When
covariates are continuous, however, the one-
category-per-facet small multiples approach
will not work. Continuous covariates require
a statistical model that predicts the CATE at
each level of the covariate. These models can
be flexible or rigid, theoretically motivated
or data-driven, depending on the research
setting. The most common model is by
far an ordinary least squares regression
with a treatment-by-covariate interaction.
"This model is equivalent to fitting separate
(straight) lines to the treated and untreated
units. The CATE estimate at each level of the
covariate is the difference between the fitted
lines.

Figure 17.6a shows a design-based way
to visualize a continuous interaction. The
outcome is mapped to the vertical axis and
the pretreatment covariate is mapped to
the horizontal axis. The randomly assigned
treatment is mapped to the shape aesthetic,
with triangles for treated units and circles for
untreated units. We overlay the fitted statis-
tical model so that we can see the model in
data-space. The graph shows that, according
to the statistical model, the treatment effect

is different at different levels of the covariate.
The model estimates negative effects for low
values of the covariate and positive effects for
high values of the covariate. The graph also
reveals that the statistical model does not fit
the data particularly well, especially at low
values of the covariate. The graph indicates
that the answer strategy of fitting a linear
treatment-by-covariate interaction will yield
misleading CATE estimates for low values of
the covariate.

Figure 17.6b visualizes the results by plot-
ting the estimated CATE for a series of values
of the covariate. Graphs like Figure 17.6b
are often presented because they explain
complex statistical models much more clearly
than the corresponding regression tables
(Brambor et al. 2006) and because some
popular software packages make them easy to
produce (e.g., King et al. 2000). However,
such graphs can convey a false sense of
certainty. The confidence intervals are
computed conditional on the statistical model
being correct, but the model is not correct
(for diagnostic checks that can alert analysts
to mispecifications in interactive models,
see Hainmueller et al. 2019). The separate
points give the impression that each point is
independent, but that is not true. The model
predictions masquerade as data; they mislead
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the viewer about the relative contribution
of the data and the statistical model to the
overall inferences. I want to emphasize that
the problem with Figure 17.6b is not just
that the statistical model is incorrect, but
also that it obscures the experimental design.
The statistical model shown in Figure 17.6a
is equally wrong — both panels represent
the same model, which could of course
be improved by more flexible regression
specification. The main virtue of Figure 17.6a
over Figure 17.6b is that, by displaying the
model in data-space, we understand the work
it does to summarize the data.

17.5.6 Noncompliance

Experiments  encounter noncompliance
when subjects assigned to the treatment
group do not receive treatment or when
control group subjects take treatment. The
standard analytic approach in such cases is to
estimate the effect of assignment on two post-
treatment variables: treatment receipt and the
outcome of interest. Under some additional
assumptions, the ratio of these two intention-
to-treat estimates forms an estimate of the
complier average causal effect, sometimes
called the local average treatment effect
(LATE; Angrist et al. 1996). Many alternative
analyses (e.g., a “per-protocol” or an “as-
treated” analysis) condition in some way on
treatment receipt. Because receipt is a post-
treatment variable, such analyses are prone
to post-treatment bias and do not typically
produce good estimates of any policy or
theory-relevant estimands. For a textbook
introduction to the analysis of experiments
under noncompliance, see Gerber and Green
(2012, chs. 5 and 6).

Experimentalists must take care to ensure
their visualizations also avoid conditioning
on post-treatment variables. Figure 17.7a
successfully avoids this error. It follows the
format of Figure 17.1 to show the group
means for two different outcomes according
to the random assignment. Figure 17.7b
conditions on a post-treatment variable by
displaying units that did and did not receive
treatment in separate facets. The left facet
compares units that did not end up taking

treatment on the basis of the assignment; the
right facet does the same for units that did
take treatment. The resulting group means
in Figure 17.7b are mostly useless for causal
inference, as neither the within-facet nor the
across-facet comparisons are informative.
Figure 17.7a follows the first guideline
(invite comparisons across randomly formed
groups), while Figure 17.7b does not. This
principle extends to other post-treatment
variables beyond treatment receipt, such as
manipulation checks (Aronow et al. 2019).

17.5.7 Attrition

Experiments sometimes encounter attrition,
or missingness in the outcome variable. Con-
ditioning the analysis on non-missingness
(i-e., dropping units for which the outcome
is missing) can induce bias because non-
missingness is a post-treatment variable.
One alternative that does not condition
on any post-treatment variables is extreme
value bounds (Manski 1999). This approach
sidesteps the problem by computing best-
case and worst-case bounds. An upper bound
on the treatment effect estimate is obtained
by imputing the maximum possible outcome
for all missing treated units and the minimum
possible outcome for all missing control
units. The lower bound is obtained by doing
the reverse. These bounds are the logical
limits on the possible values for the ATE
estimate that are consistent with the observed
data and knowledge of the minimum and
maximum possible values of the outcome.
These bounds themselves are estimates and
are subject to uncertainty due to sampling
variability.

As an answer strategy, extreme value
bounds can be difficult to communicate to
readers because, even though they rely on a
relatively simply logic, they are nevertheless
unfamiliar to many. Figure 17.8 shows one
way to visualize the procedure in a design-
based graph. As in Figure 17.1, the random
assignment is mapped to the horizontal axis
and the outcome variable (measured on a
seven-point Likert scale) is mapped to the
vertical axis. Whether the data are observed
or imputed is mapped to both color and
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Figure 17.7 Simulated experiment encountering two-sided noncompliance. Panel (a) compares ran-
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Figure 17.8 A simulated experiment encoun-
tering attrition. The panels show observed and
imputed data under the worst-case and best-case
scenarios.

shape: the observed data are shown in blue
circles and the imputed data are shown as
gold triangles. This double aesthetic mapping
ensures legibility regardless of whether the
graph is viewed in color or in grayscale.

The lower bound facet shows the worst-
case scenario. The imputed values for the
control group are as high as possible, whereas

the imputed values for the treatment group
are as low as possible. In this case, the
resulting group means (shown as large black
points) are very similar in treatment and
control, so the implied worst-case treatment
effect estimate is very close to zero. In the
upper-bound facet, however, the imputations
are reversed. Now the imputations in the
control group are as low as possible and the
imputations in the treatment group are as
high as possible. The upper-bound treatment
effect estimate is close to a full-scale point.
These extreme value bounds characterize
how big or small the treatment effect could
be under the worst- and best-case scenarios:
even with attrition that is extremely
correlated with potential outcomes, the
ATE is likely to lie somewhere between
zero and one. The visualization helps to
communicate this somewhat convoluted line
of argumentation by distinguishing what is
observed and what is imputed.

17.6 Discussion
Failure to incorporate design information

into analyses of experimental data can
lead to inferential errors of every variety.
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Failure to account for clustering can lead
to overconfidence; failure to account for
differential probabilities of assignment can
lead to bias; and failure to differentiate
clearly between which variables were and
were not randomly assigned can lead to
misinterpretation on the part of readers, if
not the analysts themselves.

In this chapter, I have argued that exper-
imenters should apply similar care to their
visualizations. Clustering can be accounted
for by plotting points with diameters propor-
tional to cluster size; differential probabilities
of assignment induced by blocking can be
addressed though faceting by block; and visu-
alizations can emphasize divisions based on
treatment assignment over divisions based on
pre- or post-treatment variables. Following
the principle of “visualize as you randomize”
means holding visualizations of experimental
data to the same standards to which we hold
analyses of experimental data.

Some of the advice in this chapter could
apply to visualizations of nonexperimental
studies as well. Observational research
designs can also be expressed in terms of
M, I, D, and A (see Blair et al. 2019, pp.
846-849 for examples), and good visual
summaries of such designs will communicate
these essential features. For example, a study
using an instrumental variables design might
use a display similar to Figure 17.72 to
show both the first-stage and the reduced-
form analyses. Visualizations of regression
discontinuity designs already often follow the
second piece of design advice to plot the data
(or small aggregations of the data in “bins”)
and model together (see, e.g., Klasnja and
Titiunik 2017, figure 1). Time-series graphs
have often been deployed to bolster the
parallel trends assumption in difference-in-
difference designs; many such graphs could
be improved by showing the fitted models
in data-space (e.g., Pischke 2007, figure 2).
The identification strategies of many
observational studies turn on a claim that
the observed data (possibly after adjustment)
are similar to the sort of data that would
arise from a randomized experiment. Design-
based statistical graphs for observational
studies can help readers understand how

exactly the analogy to experiments is being
drawn and whether the analogy is strong
enough to license causal inferences.

The foregoing examples of good and bad
visualizations are not meant as templates, nor
should anyone feel compelled to make the
same aesthetic choices as I have above. Dif-
ferent designs will call for different visual-
izations. The main purpose of the examples
is to be concrete about the otherwise amor-
phous idea of mapping design parameters to
aesthetic parameters and to show how graphs
might succeed or fail at doing so.

All of the examples were conducted in R,
which is a popular programming language in
2019 (the time of writing). I am sure that,
in the near future, many new ways to create
statistical graphs will be invented, so the pre-
cise procedures for making these particular
graphs will become obsolete. When choosing
a language in which to create graphs, analysts
should be sure to be able to create facets
for small multiples and to be able to overlay
summaries on top of raw data. These tasks
are far more difficult in some languages than
others, but we should not allow our program-
ming languages to restrict what sort of figures
we create.

Finally, I provide a brief reflection on the
many purposes of graphs for randomized
experiments. First and foremost, they are
included in academic journal articles and
books in order to elucidate experimental
design and bolster scientific conclusions.
But academic outlets are not the only place
for design-based experimental graphs. In
my experience, they far outpace tabulart
presentations of experimental results in
academic presentations, especially in settings
when the audience does not have access
to the crucial design information that a
graph could communicate. Graphs serve
a similar purpose for communicating with
nonacademic audiences. In my view, the

4 Not a litde ink has been spilled on the topic of
tables versus graphs (Gelman 2011; Gelman et al.
2002; Kastellec and Leoni 2007). In the age of online
appendices, I think the argument can mostly be put
to the side: the statistical summaries that we show
in graphs can easily be reproduced in tabular format
as well.
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purpose of a visualization is not just to
explain what we think we know, but also
why we think we know it. Since the answer
to the second question is “experimental
design,” the argument for design-based
graphs becomes self-evident.
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