Research note: A meta-reanalysis of hypothetical candidate conjoint experiments shows Black women candidates slightly outperform white men candidates

Alexander Coppock and Matthew Blyth*

October 10, 2024

For argument's sake, suppose in a hypothetical election for US president, a Black woman were running against a white man – who would win?

Political scientists have at their disposal a research design (candidate choice conjoint experiments) that can give a good answer this specific question, if not the much more pressing question of who will win the 2024 US presidential election. In a standard conjoint experiment, survey respondents are asked to choose which of two hypothetical candidates they would vote for. Crucially, the attributes of the candidates – their race, their gender, their policy positions, their political experience, and dozens of other features considered by political scientists over the years – are randomized.

In this short note, we "meta-reanalyze" the data produced by 17 such experiments conducted in the US with a mix of representative and convenience samples that randomized candidate race and gender, averaging over all the other candidate features included in each specific study.

Figure 1 displays the win rate of Black women candidates and Black men candidates in hypothetical match ups against white men candidates. The studies are arranged chronologically by survey date, with more recent data appearing at the bottom. The overall average win rates are shown as the meta-analytic summary: Black women candidates beat white men candidates 51.7% of the time and Black men candidates beat white men candidates 52.3% of the time. In none of the individual cases is the win rate for Black candidates statistically significantly lower than 50%; the win rate is significantly higher than 50% in three cases for Black women and also three cases for Black men. At a minimum, the experimental record from conjoint experiments indicates no average penalty for Black candidates relative to white men and if anything, suggests a mild advantage.

^{*}Alexander Coppock is Associate Professor of Political Science (on term) at Yale University. Matthew Blyth is a Tobin Center pre-doctoral fellow at Yale University.

E. 1 /	A •		11 1 1	D1 1	1.1	1.4	1 1
Figure F A	Average win	rates of nyi	ornerical	Black	candidates	versus white	men by study
I ISUIC I. I	rorage will	I GOOD OI HY	Jouriourour	Diaon	canalation	voibus willoo	mon by buddy

Hopkins (2014)	56.3
GfK representative sample	47.6
Hainmueller, Hopkins, and Yamamoto (2014) MTurk convenience sample	54.9
Kirkland and Coppock (2018) YouGov representative sample	46.6
Kirkland and Coppock (2018) MTurk convenience sample	59.1
Funck and McCabe (2022)	44.7
Costa (2021) Lucid convenience sample	53.1
Bansak et al.(2018) Mturk convenience sample	49.7 51.3
Bansak et al. (2018) SSI convenience sample	47.6i \$1.5
Atkeson and Hamel (2020) MTurk convenience sample	54.7
Ono and Burden (2019) SSI convenience sample	46.3
Manento and Testa (2021) MTurk convenience sample	58.0
Green, Schaffner, and Luks (2023) YouGov Dem. primary voters	53.4
Carey et al. (2022) YouGov representative sample	49.0
Carey et al. (2022) Donors sample	47.9 51.8
Agadjanian et al. (2023) Qualtrics convenience sample	54.8
Leeper and Robison (2020) SSI convenience sample	<u>50.1</u> 48.6
Lemi (2021)	73.5
Qualtrics convenience sample	40.2
Meta-analytic summary	52.3 Black men
	25% 50% 75%
	Vote share of black men and women candidates versus white men candidates

Most conjoint experiments consider only broad racial categories – Figure 1 reports the results of matchups between candidates described simply as "Black" or "white." The only conjoint experiment in our collection that examines the electoral impact of mixed identity is Lemi (2021). In that experiment, 45 out of 7,840 total contests compared a white man with a woman of Black and Asian descent (a category still only loosely approximating Kamala Harris's Jamaican and Indian heritage). Of these 45 profile comparisons, the hypothetical Black and Asian woman won 26 times, while the white man won 19, giving an estimated win rate of 57.7% (SE: 7.7 points).

Table 1 breaks down the meta-analytic averages by respondent gender and respondent partisanship. In every case – men, women, Republicans, Democrats – the win rates for Black candidates exceed 50% (though just barely in some cases). The *p*-value reported in the final column reports the results of a test against the null hypothesis that the true win rate is exactly 50%.

Respondent Group	Comparison	Estimate	SE	P-value (50)
Men	Black men	52.3	1.1	0.0318
Women	Black men	52.5	1.2	0.0382
Men	Black women	50.1	1.7	0.9357
Women	Black women	55.7	3.2	0.0772
Democrats	Black men	54.0	1.3	0.0016
Republicans	Black men	50.3	1.2	0.7815
Democrats	Black women	54.3	1.6	0.0070
Republicans	Black women	51.8	5.1	0.7163
Overall	Black men	52.2	0.7	0.0009
Overall	Black women	51.7	1.0	0.1085

Table 1: Meta-analytic estimates of win rates for Black candidates, by respondent gender and partisanship

In sum, the results of the widely repeated candidate choice conjoint design in the US reveal no clear advantage or disadvantage for Black women or Black men candidates running against white men. If anything, we find a very mild advantage for Black candidates on average and also within respondent subgroups defined by gender and by partisanship.

What do these results mean for the 2024 election? Can we predict a Harris win because survey respondents chose Black candidates ever so slightly more often than white candidates? Certainly not – Harris and Trump differ as candidates and as people in many ways beyond their race and gender. We can, however, surmise that the candidates' race and gender alone are not decisive factors for voters. Other aspects of their identities not captured by the conjoints including how they would govern (one hopes) are more consequential.

Appendix A: Methodological details

Our study is a "meta-reanalysis" (Galos and Coppock, 2023), which means we first gathered the original datasets for all included studies, cleaned and standardized them, and then calculated win rates for the relevant matchups in each study.

Our ambition was to include all (standard design) conjoint experiments carried out in the United

States that randomize race and gender as possible. This process included using tools like Google Scholar to look through the literature in political science. We also searched online data repositories, including the Time Sharing Experiments in the Social Sciences (TESS) database and the Harvard Dataverse. Additionally, we located some studies by following citations from other works and corresponding with the original authors. Any replication data that was not available online was requested from the corresponding author. We define the "standard design" as a paired conjoint experiment that randomizes attributes across two candidate profiles and requests a binary choice between them. We do not consider here variations on the standard design, such as experiments that allow subjects to abstain or vote third party, designs that held one or more of one profile's attributes constant, vignette-based candidate choice studies, or single (or triple or quadruple) profile designs.

A key distinction between our analysis and commonly reported results from conjoint experiments is our focus on win rates. Unlike many conjoint analyses, we do not estimate Average Marginal Component Effects (AMCEs); instead, we calculate the proportion of times a profile with specific attributes is selected in all contests between candidates of a given type. Although win rates and AMCEs are closely related, reporting win rates clarifies that our estimand is descriptive (what fraction of contests between Black women and white men candidates are won by Black women) rather than causal (what is the effect of being Black, relative to white, on support).

Additional details: We cluster our standard errors by respondent using the estimatr package in R. We assign respondent weights use iterative raking with the help of the autumn package that are based on demographic data on gender, age, race, and education from the 2022 American Communities Survey. We apply a random effects model to derive the meta-analytic estimates using the metafor package.

Appendix B: additional results

Figures 2 and 3 present forest plots of the win rates, broken by respondent gender and partisanship, respectively. Of special note is the very low win rate for Black women among Republicans in the Kirkland and Coppock (2018) study, which is an outlier in this collection for which we have no explanation. Table 2 presents the same information as the figures in tabular form.

Figure 2: Average win rates of hypothetical Black candidates versus white men by study and respondent gender

	Men respondents	Women respondents
Hopkins (2014) GfK representative sample	58.6	54.7
Kirkland and Coppock (2018) YouGov representative sample	43.7	4910
Kirkland and Coppock (2018) MTurk convenience sample	55.5	61.5 59.3
Funck and McCabe (2022) Lucid convenience sample	33.3	46.1
Atkeson and Hamel (2020) MTurk convenience sample	60.9	4912
Ono and Burden (2019) SSI convenience sample	45.1 51.1	47.4
Manento and Testa (2021) MTurk convenience sample	51.1	64.8 55.9
Green, Schaffner, and Luks (2023) YouGov Dem. primary voters	53.4	55.9
Carey et al. (2022) YouGov representative sample	47.6	50.2
Carey et al. (2022) Donors sample	47.5	48.3
Agadjanian et al. (2023) Qualtrics convenience sample	55.3	54.4
Leeper and Robison (2020) SSI convenience sample	42.9	46.3
Lemi (2021) = Qualtrics convenience sample	19.3	92.4
Meta-analytic summary	5d.0 Black women 52.3	55.8 Black women 52.8 Black men
	25% 50% 75% Vote share of black n	25% 50% 75% nen and women candidates
		nen and women candidates e men candidates

Figure 3: Average win rates of hypothetical Black candidates versus white men by study and respondent partisanship

	Democratic respondents	Republican respondents
Hopkins (2014)	59.6	50.8
GfK representative sample	48.0	49.9
Kirkland and Coppock (2018) YouGov representative sample	55.8	24.8
Kirkland and Coppock (2018) MTurk convenience sample	59.1	52.6 39.2
Funck and McCabe (2022) Lucid convenience sample	44.9	37.2
Costa (2021) Lucid convenience sample	<u>50.5</u> 47.6	53.6
Bansak et al.(2018) Mturk convenience sample	51.4	46.2
Bansak et al. (2018) SSI convenience sample	46.1 ¹ \$2.2	50.0
Atkeson and Hamel (2020) MTurk convenience sample	52.8	49.1
Ono and Burden (2019) SSI convenience sample	49.2 52.2	52.2
Manento and Testa (2021) MTurk convenience sample	62.0	48,9
Green, Schaffner, and Luks (2023) YouGov Dem. primary voters	53.4	
Agadjanian et al. (2023) Qualtrics convenience sample	60.6 56.3	\$2.7 50.4
Leeper and Robison (2020) SSI convenience sample	51.5 4818	49.5
Lemi (2021) Qualtrics convenience sample	38.6	10
Meta-analytic summary	54.3 Black women 54.0	51.8 Black women 50.3 Black men
		25% 50% 75% and women candidates nen candidates

Study	Comparison	Estimate	SE	P-value (50)
Agadjanian et al. (2023)	Black men	52.8	1.5	0.0568
Agadjanian et al. (2023)	Black women	54.8	1.4	0.0006
Atkeson and Hamel (2020)	Black men	56.7	4.4	0.1327
Atkeson and Hamel (2020)	Black women	54.7	5.5	0.4037
Bansak et al.(2018)	Black men	51.3	1.3	0.3128
Bansak et al. (2018)	Black women	49.7	1.3	0.8163
Bansak et al. (2018)	Black men	51.5	2.5	0.5695
Bansak et al. (2018)	Black women	47.6	2.7	0.3703
Carey et al. (2022)	Black men	51.8	2.8	0.5276
Carey et al. (2022)	Black women	47.9	2.9	0.4558
Carey et al. (2022)	Black men	48.8	2.0	0.5554
Carey et al. (2022)	Black women	49.5	2.1	0.7996
Costa (2021)	Black men	53.1	3.0	0.3119
Costa (2021)	Black women	55.2	3.0	0.0907
Funck and McCabe (2022)	Black men	45.3	3.6	0.1914
Funck and McCabe (2022)	Black women	44.7	5.2	0.3079
Green, Schaffner, and Luks (2023)	Black men	54.7	1.7	0.0052
Green, Schaffner, and Luks (2023)	Black women	53.4	1.7	0.0510
Hainmueller, Hopkins, and Yamamoto (2014)	Black men	54.2	6.2	0.4984
Hainmueller, Hopkins, and Yamamoto (2014)	Black women	54.9	7.0	0.4899
Hopkins (2014)	Black men	47.6	4.3	0.5774
Hopkins (2014)	Black women	56.3	4.1	0.1311
Kirkland and Coppock (2018)	Black men	52.6	3.7	0.4804
Kirkland and Coppock (2018)	Black women	59.1	4.3	0.0395
Kirkland and Coppock (2018)	Black men	58.9	3.6	0.0133
Kirkland and Coppock (2018)	Black women	46.6	3.7	0.3658
Leeper and Robison (2020)	Black men	48.6	4.0	0.7345
Leeper and Robison (2020)	Black women	50.1	4.3	0.9780
Lemi (2021)	Black men	40.2	15.6	0.5604
Lemi (2021)	Black women	73.5	13.6	0.2102
Manento and Testa (2021)	Black men	56.7	3.0	0.0257
Manento and Testa (2021)	Black women	58.0	3.1	0.0104
Ono and Burden (2019)	Black men	52.5	2.6	0.3439
Ono and Burden (2019)	Black women	46.3	2.6	0.1556

Table 2: Comparisons are to elections against white men, estimates are the percent of profiles that were chosen

References

- Agadjanian, Alexander, John M Carey, Yusaku Horiuchi, and Timothy J Ryan. 2023. "Disfavor or favor? Assessing the valence of White Americans' racial attitudes." *Quarterly Journal of Political Science* 18 (1): 75–103.
- Atkeson, Lonna Rae, and Brian T. Hamel. 2020. "Fit for the Job: Candidate Qualifications and Vote Choice in Low Information Elections." *Political Behavior* 42 (1): 59–82.
- Bansak, Kirk, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto. 2018. "The Number of Choice Tasks and Survey Satisficing in Conjoint Experiments." *Political Analysis* 26 (1): 112–119.
- Costa, Mia. 2021. "Ideology, Not Affect: What Americans Want from Political Representation." American Journal of Political Science 65 (2): 342–358.
- Funck, Amy S, and Katherine T McCabe. 2022. "Partisanship, information, and the conditional effects of scandal on voting decisions." *Political Behavior* 44 (3): 1389–1409.
- Galos, Diana Roxana, and Alexander Coppock. 2023. "Gender composition predicts gender bias: A meta-reanalysis of hiring discrimination audit experiments." *Science Advances* 9 (18): eade7979.
- Green, Jon, Brian Schaffner, and Sam Luks. 2022. "Strategic discrimination in the 2020 democratic primary." *Public Opinion Quarterly* 86 (4): 886–898.
- Hainmueller, Jens, Daniel J. Hopkins, and Teppei Yamamoto. 2014. "Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices via Stated Preference Experiments." *Political Analysis* 22 (1): 1–30.
- John Carey, Katherine Clayton, Gretchen Helmke Brendan Nyhan Mitchell Sanders, and Susan Stokes. 2022. "Who will defend democracy? Evaluating tradeoffs in candidate support among partisan donors and voters." *Journal of Elections, Public Opinion and Parties* 32 (1): 230–245.
- Kirkland, Patricia A., and Alexander Coppock. 2018. "Candidate Choice Without Party Labels: New Insights from Conjoint Survey Experiments." *Political Behavior* 40 (3): 571–591.
- Leeper, Thomas J., and Joshua Robison. 2020. "More Important, but for What Exactly? The Insignificant Role of Subjective Issue Importance in Vote Decisions." *Political Behavior* 42 (1): 239–259.
- Lemi, Danielle Casarez. 2021. "Do voters prefer just any descriptive representative? The case of multiracial candidates." *Perspectives on Politics* 19 (4): 1061–1081.
- Manento, Cory, and Paul F Testa. 2022. "In party we trust? Voter support for party-backed candidates in primary elections." *Political Behavior* 44 (4): 1633–1656.
- Ono, Yoshikuni, and Barry C Burden. 2019. "The contingent effects of candidate sex on voter choice." *Political Behavior* 41: 583–607.