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Abstract: Experimental researchers in political science frequently face the problem of inferring which of several treatment
arms is most effective. They may also seek to estimate mean outcomes under that arm, construct confidence intervals,
and test hypotheses. Ordinarily, multiarm trials conducted using static designs assign participants to each arm with fixed
probabilities. However, a growing statistical literature suggests that adaptive experimental designs that dynamically allocate
larger assignment probabilities to more promising treatments are better equipped to discover the best performing arm.
Using simulations and empirical applications, we explore the conditions under which such designs hasten the discovery of
superior treatments and improve the precision with which their effects are estimated. Recognizing that many scholars seek
to assess performance relative to a control condition, we also develop and implement a novel adaptive algorithm that seeks
to maximize the precision with which the largest treatment effect is estimated .
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xperimentation in the social sciences often in-

volves a search for the intervention that max-

imizes a desired outcome or yields the largest
treatment effect relative to a baseline control condi-
tion. Which of the many ways of monitoring corruption
among public officials minimizes the amount of miss-
ing public funds (Olken 2007)? What combination of
personal attributes makes an applicant for naturaliza-
tion most attractive to voters in the receiving country
(Hainmueller and Hangartner 2013)? In many cases, this
search dovetails with other academic objectives, such as
discerning the causal mechanisms that make certain in-
terventions especially effective (Ludwig, Kling, and Mul-
lainathan 2011).

Experiments that assess the relative effectiveness
of competing interventions, be they policies or mes-
sages, often confront a fundamental problem: the list of
interventions under consideration is so long that it is

prohibitively costly and time consuming to sufficiently
test the full range of treatment arms. Furthermore, even
if money were no object, a prolonged search for the best
alternative may impose excessive costs on human sub-
jects and delay the implementation of interventions that
would be superior to the status quo. Researchers typically
use theory, intuition, and prior research to reduce the
large space of possible treatments to a manageable few.
Persistent concerns remain, however, that some possibil-
ities are discarded too soon or that practical constraints
on the number of arms in the typical experiment induce
researchers to narrow the range of interventions they test.

Response-adaptive trials may increase the speed and
efficiency with which multiarm trials discern the best
performing intervention or interventions. In contrast to
conventional static designs that allocate a fixed propor-
tion of subjects to each arm throughout the trial, this
class of adaptive designs dynamically update assignment
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ADAPTIVE EXPERIMENTAL DESIGN

probabilities based on observed outcomes, investing an
ever-larger share of the subject pool in more promising
treatment arms. In substantive domains from advertising
(Graepel et al. 2010; Li et al. 2010) to biomedical research
(Chow and Chang 2008; Chin 2016; Lei, Tewari and Mur-
phy 2017; Villar, Bowden, and Wason 2015; Sydes et al.
2012), adaptive trials are used to speed the search for the
best performing intervention.

That said, adaptive designs are no panacea. In situa-
tions where several treatment arms are effective, adaptive
algorithms may equivocate, allocating more subjects to
arms whose initial success was due only to sampling fluc-
tuation. In the case where outcomes under all arms are
equivalent, every arm is the “best” arm, and adaptive de-
sign confers no special advantages and might even cause a
trial to drag on in a vain search for a best arm. Given this
uneasy combination of upside potential and downside
risk, the literature on adaptive designs abounds with pro-
posals for allocating subjects in ways that guard against
false positives and give early warning signals about fu-
tile searches among roughly equally effective (or ineffec-
tive) interventions—and some algorithms are more ro-
bust to recover from such false starts than others (Russo
et al. 2017; Urteaga and Wiggins 2017). Alternatives,
such as the empirical Bayes Stein-type estimators pro-
posed by Dimmery, Bakshy, and Sekhon (2019), exploit
a set of best arms, rather than a unique best arm, al-
lowing researchers to better distinguish among the top
treatments.

Adaptive trials encompass a broad class of designs
that potentially evolve based on interim results. Here, we
discuss trials that dynamically update treatment assign-
ment probabilities based on observed outcomes (some-
times referred to as response-adaptive randomization).
Other adaptive design adjustments include modifying
treatments, updating sample size or eligibility criteria, or
halting the trial entirely (Chin 2016; Pallmann et al. 2018;
Wason, Brocklehurst, and Yap 2019). Adaptive designs
also vary in their goals. Some aim to maximize cumu-
lative response (e.g., in a medical trial, achieving opti-
mal health outcomes across all subjects in the study, as
in Murphy 2003); others endeavor to identify arms with
average responses that exceed some threshold (Locatelli,
Gutzeit, and Carpentier 2016). These alternative objec-
tives fall outside the scope of this article, which covers
adaptive trials with objectives that are most relevant to
political scientists: finding and evaluating the best per-
forming arm and estimating its causal effect relative to
some control condition. For the remainder of the article,
we refer to response-adaptive designs simply as “adaptive
designs,” but we acknowledge that the term “adaptive”
encompasses a much broader class of designs.
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The first aim of this article is to introduce political
scientists to such adaptive designs, suggest approaches
for estimation in such settings, and highlight the con-
ditions under which adaptive designs outperform con-
ventional static designs, focusing on the metrics of best
arm selection and root mean squared error (RMSE). We
begin by introducing a commonly used algorithm for
response-adaptive randomization, known in the litera-
ture as Thompson sampling (Thompson 1933, 1935).
Although alternative algorithms may outperform stan-
dard Thompson sampling for a given objective, this pro-
cedure is an apt starting point. It is one of the sim-
plest, most intuitive, and most widely studied approaches
to response-adaptive randomization, and versions of
Thompson sampling are extensively used in industry ap-
plications.

The second aim of this article is to propose a new
adaptive algorithm specifically tailored to a common re-
search goal for many political scientists: estimating the
average treatment effect of the best performing arm (rel-
ative to a control condition) with as much precision as
possible. Our control-augmented algorithm adaptively al-
locates more subjects to the best performing arm as it
emerges (as in standard Thompson sampling) but also
allocates more subjects to the control arm as the set of
effective treatments is whittled down.

To see the intuition behind the control-augmented
design, consider a much-simplified adaptive algorithm.
The full sample is divided into two equally sized batches.
With the first batch, we conduct a large pilot study in
which we randomly assign subjects to each of the treat-
ment arms with equal probabilities. With the second
batch, we randomly assign subjects to one of just two
arms: the control or the best performing arm from the
first batch. Because such a large fraction of the total sam-
ple is allocated to the control and best-performing arm
by the end of the study, we achieve large increases in pre-
cision over a standard static trial. This simplified algo-
rithm divides the full sample into just two large batches,
whereas in typical applications, the control-augmented
design smooths the process of allocating additional sub-
jects to the control and the best-performing arm over
many smaller batches, thereby using the full sample more
efficiently.!

We illustrate the features of adaptive designs with a
series of simulations in more and less favorable scenarios.

IThat said, we find in simulations in Supporting Information (SI)
D.1 (p. 21) that the largest precision increases occur when moving
from one batch (a static trial) to two batches. Researchers wishing
to avoid the logistical and analytic complications of a full-blown
adaptive algorithm might find this two-step procedure to be an
attractive alternative to a standard static multiarm design.
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The simulation results can help guide researchers who
want to learn about the conditions under which adap-
tive designs improve precision. We then turn to a set
of empirical applications. Study 1 uses Thompson sam-
pling to measure support for alternative ballot measures
for two policies: increasing the minimum wage and a
right-to-work law. In the case of right-to-work propos-
als, the adaptive design quickly identifies a clear win-
ner with a high degree of statistical precision. Results are
more ambiguous for minimum wage proposals, where
several possibilities seem equally promising. Study 2 ap-
plies our control-augmented algorithm to the study of
misperceptions of facts. We explore six alternative treat-
ments to induce survey respondents to give more cor-
rect answers to factual questions about economic con-
ditions. We conduct our adaptive trial separately among
Republican and Democratic partisans; among Republi-
cans, the best treatment arm (being entered in a lot-
tery for an Amazon gift card) prevailed quickly, whereas
among Democrats, the lottery took longer to beat out
competitor arms. We offer an additional application for
adaptive designs in SI G (p. 39): We apply a model-based
adaptive algorithm to the factorial conjoint experimen-
tal designs that are increasingly used in political science.
This approach allows us to navigate the large number of
combinations of ballot measure attribute levels, with the
objective of finding the combination that will yield the
highest support.

Adaptive Trials and the Multiarmed
Bandit Problem

Response-adaptive randomized trials are frequently posi-
tioned in the framework of the multiarmed bandit prob-
lem, first posed by Thompson (1933, 1935), where the
experimenter is tasked with sequentially allocating finite
resources across multiple treatment arms.” Each treat-
ment arm is associated with a distribution of outcomes
in the study population.

These distributions are not known at the outset of
the experiment, but the experimenter gradually learns
about them by observing outcomes under different treat-
ments. The typical trade-off addressed in such settings
is between exploration and exploitation. Experimenters
would like to explore by obtaining information about
each arm so that they can be confident in selecting the

*For a history of the bandit problem and an overview of general ap-
proaches, see Berry and Fristedt (1985). For an updated overview
of the general field of reinforcement learning, see Sutton and Barto
(2018).
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best arm. They would also like to exploit the best per-
forming arms by allocating large proportions of subjects
to them in order to achieve the goals of the interven-
tion. These two objectives are in tension with one an-
other. On the one hand, too much exploration means
wasting draws on underperforming arms. On the other
hand, overexploitation of early frontrunners risks ignor-
ing potentially superior arms.

A common objective in these settings is the maxi-
mization of expected reward. In the binary case, reward
may be as simple as observed “successes” under each arm,
where a success is a specified outcome value such as reg-
istering to vote or making a charitable donation. Despite
the “success” label, the outcome need not be normatively
desirable—the reward function can just as easily be in-
verted to minimize realizations of the specified outcome.
In our empirical examples, the expected reward in an
experiment is equal to the expected outcome or the ex-
pected success rate conditional on treatment assignment
procedures. More complex reward functions could incor-
porate other costs (such as those associated with deploy-
ing the treatments) or benefits (such as those accruing to
subjects as a result of the outcome).

Thompson Sampling

Thompson sampling is a heuristic approach to navigat-
ing the exploration—exploitation trade-off, facilitated by
randomly assigning subjects to treatment arms according
to their probability of returning the highest reward under
a Bayesian posterior.> When there is not much informa-
tion about which arm is best, the algorithm will facilitate
exploration. As more information is gained, the best per-
forming arms are increasingly exploited.

For ease of exposition we consider binary rewards,
where each observation is either a success or a failure,
x € {0, 1}. Here, K arms have unknown success rates
01, ..., Ok, following their respective Bernoulli distribu-
tions, with likelihoods

fxe, (x161), ..., fxgox (xx10k).

A researcher assigns some prior fg,(0x) to the suc-
cess rate of each arm. When researchers are initially

*We will focus primarily on Thompson sampling here, although
there are many other algorithms, such as the upper confidence
bound (UCB) algorithm, which selects the arm with the high-
est upper bound on an uncertainty interval around its estimated
value, and the Epsilon-greedy algorithm, which selects the arm
with the highest value most of the time, and assigns treatment ran-
domly € share of the time. The relative performance of each alloca-
tion rule depends on the time-horizon of the trial and the yardstick
used to measure success: regret, statistical power, type I error rates
(Villar, Bowden, and Wason 2015).
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agnostic about the relative performance of the K arms,
priors are distributed uniformly over the parameter
space, which here is Beta(1, 1). If the researchers have
prior beliefs or evidence regarding the performance of
the arms, they may set the prior distributions accord-
ingly. In each period ¢, treatment is assigned and ob-
servations are observed for each arm k, respectively.
Let n;, be the cumulative assignment to arm k and
Xk{nk"} = (X(1]k» - - - » X[n,, k) be the vector of responses
under treatment arm k observed up until and includin§
time ¢. The distribution of each ® given the data Xk{nk“
in time ¢ is then

{710} o
Joyqx (9k|x’< k ) X fygred o, (xk k |9"> fo, (8k).

The Beta distribution is a conjugate prior for Binomial
likelihoods, and consequently the posteriors follow a Beta
distribution. The posterior a parameter is equal to one
plus the total number of successes observed from that
arm, and the posterior f parameter is equal to one plus
the total number of failures observed from that arm.

In each period ¢, treatment is randomly assigned ac-
cording to the probability of arms being best, that is,

P[@)k = max(®,. ... O] (xm x}(”“])},

and rewards are observed.* At the end of the period, the
posterior is updated according to the successes and fail-
ures observed in that period, and the probability that
each arm is best is recalculated. In the subsequent pe-
riod, treatment assignment continues according to the
updated probabilities.

Thompson sampling can be adapted to allow for
drift in parameter values over time (Gupta, Granmo, and
Agrawala 2011) or can account for reward probabilities
that vary based on other variables that describe the con-
text in which the action is taken (Agrawal and Goyal
2012). It can also be applied to more complex problems
considered under reinforcement learning, where actions
can affect future states, and information about rewards is
delayed or sparse (Russo et al. 2017; Sutton and Barto
2018). In some applications, such as the ones consid-
ered here, adaptive trials end after a fixed period or when
a predetermined number of subjects have participated
in the trial. In other applications, the trial stops when
any arm achieves a prespecified probability of being best;

*We will use the term “probability of being best” to refer to the pos-
terior probability that a given arm has the highest value of 6. For a
worked numerical example, see SI C (p. 13). In practice, however,
we generally estimate the value through simulation, taking a series
of random draws from the posterior probability distributions of all
arms, calculating the share of the series in which each arm had the
highest draw, as implemented in the bandit package for R (Lotze
and Loecher 2014).
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when used to establish statistical significance of effects,
such stopping rules can run the risk of producing a false
discovery, as the trial may stop if the best performing arm
surpasses the target due to chance (Berman et al. 2018).

Here, our first objective is to select the best arm and
estimate mean outcomes under this arm, not, as is com-
mon in the social sciences, to estimate average treatment
effects, which is taken up in the next section. Indeed, if we
assign treatment probabilities to all arms under Thomp-
son sampling, and the control arm performs poorly rela-
tive to other arms, relatively few subjects will be assigned
to the control arm, in which case estimates of the average
treatment effect will typically have a larger standard er-
ror than under a static, balanced design (see simulations
in SI D, p. 21).

Even if we are interested solely in estimating arm-
specific means, Nie et al. (2017) demonstrate that sam-
ple means from adaptive experiments are prone to bias.
(See SI C.2 p. 14, this bias is discussed in further detail
in Villar, Bowden, and Wason 2015; Bowden and Trippa
2017.) For this reason, we use inverse probability weight-
ing (IPW) estimators to account for bias introduced by
sampling procedures. However, such estimators can ex-
hibit large variance for arms with low sampling proba-
bilities, which means that a standard static design may be
preferable if precise evaluation of all treatment arms is
the primary research objective.

An Algorithm for Adaptive Trials with a
Control Condition

Researchers often seek to test whether one or more in-
terventions outperform a control condition. Depending
on the researchers’ theoretical objectives, the control
condition may involve a placebo, a business-as-usual
treatment, or no intervention whatsoever. The inclusion
of a control condition adds a layer of complexity to an
adaptive trial.” When the aim is to gauge causal effects
vis-a-vis a control group, the researcher must allocate
sample to explore competing treatment arms while
reserving sufficient sample for the control arm so that
the resulting treatment-versus-control comparison is as
precise as possible.

>Methods for accounting for a control condition in adaptive tri-
als have been considered before in clinical settings. Villar, Bowden,
and Wason (2015) propose an approach in which an adaptive al-
gorithm is used for treatment arms, but patients are assigned to
a control condition with a fixed probability. Trippa et al. (2012)
and Wason and Trippa (2014) also propose hybrid Bayesian ran-
domization schemes, where assignment to the control condition
depends on the cumulative sample assigned to a treatment arm
and tuning parameters chosen by the researcher.
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We propose a control-augmented adaptive algo-
rithm to address this trade-off. In the first period, we as-
sign treatment uniformly at random, as we would under
Thompson sampling when we posit the same priors for
all arms. The sample allocation probabilities for subse-
quent periods are then built from two component parts.
The first part ensures that we sample sufficiently from the
control condition. We calculate posterior probabilities of
being best for each arm and identify the “current best
arm” as the arm with the highest posterior probability.
We then compare the cumulative sample assigned to the
control condition to the cumulative sample assigned to
the current best arm. If the cumulative sample assigned
to the control condition is smaller, we calculate the por-
tion of the subsequent batch that must be assigned to the
control condition to achieve parity between the control
sample and the sample of the current best arm. For ex-
ample, if the current best arm is ahead of the control
by three observations, and the expected batch size is 10,
30% of the treatment assignment probability will go to
the control condition. We cap this probability at 90%
to ensure that there is nonzero probability of assigning
any of the treatment arms in each period. (This proba-
bility ceiling operates comparably to probability floors,
as in, e.g., Dimakopoulou et al. 2017. The choice of 90%
or some other high probability is arbitrary and simply
guards against rare events; in practice, this constraint was
seldom a binding constraint in our simulations with suf-
ficiently large batches.)

The second part of the sampling probabilities nav-
igates the exploration—exploitation trade-off across con-
ditions. For the control, there is no trade-off, so we assign
a fixed 1/K of the remaining probability to the control
condition (where K is the number of treatment arms).
The (K — 1)/K of the remaining probability is divided
among treatment conditions proportional to their calcu-
lated posterior probabilities of being best, as in standard
Thompson sampling.®

We assign treatments according to these probabilities
in the next period, and the process of updating assign-
ment probabilities begins again. A formalization of this
algorithm is in SI A (p. 3), along with a worked example
in SI C.3 (p. 18). In SI B.3 (p. 9), we discuss the theoreti-
cal properties of the algorithm.

In SI A (p. 3), we discuss allowing control assignment to vary
over successive batches by adjusting algorithm parameters. Here,
we have emphasized allowing the number of subjects assigned to
the control arm to ‘catch up’ to the number assigned to the best
treatment arm to facilitate approximate balance, even as the arm
we identify as ‘best’ changes across batches.
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Hypothesis Testing in Adaptive Trials

Hypothesis testing under adaptive experimentation is
complicated by the design feature that later treatment
assignments and outcomes depend on earlier treat-
ment assignments and outcomes. Hypothesis testing
procedures such as F- or f-tests that compare aver-
age outcomes across arms typically assume that group
mean estimates are statistically independent, but un-
der adaptive designs they are not. The consequence of
this dependence is that naive hypothesis tests will tend
to be overconfident, yielding smaller p-values than is
appropriate.

To conduct joint hypothesis tests, we propose a
randomization inference procedure against the sharp
null hypothesis of no differences across all arms for all
units.” The test proceeds as follows. First, we obtain the
F-statistic from an inverse-probability weighted regres-
sion of the outcome on indicators for all groups. Second,
we simulate the distribution of the F-statistic under the
sharp null hypothesis that each unit would express the
same outcome as observed, regardless of treatment as-
signment. This null distribution is importantly different
from the theoretical F-distribution implied by the nom-
inal degrees of freedom: The simulated null distribution
accounts for the dependence across units by allowing
the randomization algorithm to adapt differently in each
run of the simulation. Finally, we obtain a p-value by
observing the proportion of simulated F-statistics under
the sharp null that are more extreme than the observed
F-statistic.®’

The randomization inference approach will work
for joint tests (such as the F-test) that compare across
all K arms, but it will be inappropriate for pairwise
comparisons across arms. The reason for this is that in
a pairwise test, we want to test the null hypothesis of no

"For a textbook introduction to randomization inference, see Ger-
ber and Green (2012, chapter 3) with a discussion of implemen-
tation under static designs. A superpopulation-based permutation
test for adaptive trials similar in spirit to the one we discuss here is
presented in Wei (1988).

8 Although there is a relationship between the nulls under the joint
test and the pairwise test of the best arm compared to control, we
may fail to reject the null under either test and yet reject under the
other. The added value of the joint test is that it serves as a robust-
ness check and better accounts for the full realization of treatment
assignment and response.

?Compared with adaptive designs, static designs are better pow-
ered to detect deviations from the null hypothesis of no effect for
any unit in any arm, because under the null, static designs will es-
timate all group means with greater precision. In other words, if
all arms are equally effective, the adaptive procedure will not find
a best arm (because no arm is best), and it will add variance in
the process.
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TABLE 1 Iterated Simulation Statistics
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Design RMSE Coverage
Assignment algorithm Case Bestarm selected  Best arm ATE Best arm ATE
TS 1: Clear winner 0.968 0.021 - 0.958 -
2: No clear winner 0.193 0.033 - 0.880 -
3: Competing second best 0.715 0.025 - 0.956 -
Static 1: Clear winner 0.909 0.031 0.038 0.941 0.949
2: No clear winner 0.180 0.024 0.033 0.935 0.947
3: Competing second best 0.635 0.031 0.038 0.940 0.945
TS, 1: Clear winner 0.956 0.023 0.029 0.957 0.952
Control-Augmented 2: No clear winner 0.174 0.034 0.041 0.879 0.886
3: Competing second best 0.683 0.029 0.035 0.946 0.937

Note: Assignment algorithms are Thompson sampling (TS), balanced static design (Static), and control-augmented Thompson sampling
(TS, Control-Augmented). “Best arm selected” column presents the portion of simulations under which the true best arm was selected.
RMSE is average root mean squared error of the estimate of the mean of the true best arm, and the average treatment effect of the true
best arm relative to the control. Coverage is with respect to 95% confidence intervals around the estimate. In all cases one of the inferior
arms with a true success rate of 0.10 is selected as the control comparison.

difference in outcomes across the two particular arms in
question, but the hypothesis does not specify the out-
come distributions under the remaining K — 2 arms.
This problem applies to static trials as well (Young 2019)
but is even more vexing for adaptive trials because sam-
pling probabilities depend on observed outcomes under
all arms.

One approach is to restrict the use of standard
t-tests to large studies. Under the control augmented
design, when there is a unique best arm, asymptotically,
standard t-tests will provide proper coverage (Zhang,
Janson, and Murphy 2020). (Here and throughout, we
use HC2 robust standard errors for confidence intervals,
as implemented by the estimatr package, Blair et al.
2020.) The reason is that eventually the adaptive algo-
rithm will converge to a pairwise comparison between
the best arm and the control arm, although Zhang,
Janson, and Murphy (2020) note that when the signal-
to-noise ratio is small, undercoverage may still occur in
finite samples. Our simulation evidence (presented in
SI D p. 21) confirms that when there is a unique best
arm and sufficient data, the confidence intervals for the
difference-in-means test have correct coverage. When
there is no best arm or when an adaptive study is too
small to reliably detect a best arm, hypothesis testing
becomes more complex and is an active area of statistical
investigation. In SI B (p. 6), we provide an overview of
this literature and proposed methods.

Simulations Illustrating How
Adaptive Designs Work

We illustrate properties of adaptive designs under sev-
eral hypothetical scenarios. In these scenarios, we sim-
ulate experiments sampling 100 observations for each of
10 periods, assigning treatment to nine arms according to
the adaptive algorithms or a standard static design. In the
adaptive algorithms, we set uniform priors for all arms,
and arms are sampled with equal probability in the first
period. The choice of 10 periods is arbitrary but antici-
pates the empirical examples presented below, which run
for 10 days.

We illustrate development of a single simulated ex-
periment in each scenario under Thompson sampling
and a static design (Figure 1), and under the control-
augmented design (Figure 2). We then present averages
across 10,000 simulations (Table 1). In SI D, we repeat
these simulations, varying the number of batches, the
success rate of the best arm, and the size of the first batch.

We consider three scenarios. In the first case, there
is a clear winner: One arm has a 0.20 success rate, and
the remaining eight arms have success rates of 0.10. In
the second case, there is no clear winner: The best arm
has only a 0.11 success rate, and the remaining eight
arms have success rates of 0.10. In the third case, the best
arm is clearly superior to most other arms, but there is a
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FIGURE 1 Simulated Posterior Probabilities over Time, Thompson Sampling and Static Designs
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Note: Assignment algorithms are Thompson sampling (TS) and balanced static design (static). Success probabilities are as follows:

Case 1: (0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
Case 2: (0.11, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
Case 3: (0.2, 0.18, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

competing second-best arm: The best arm has a 0.20 suc-
cess rate, a second-best arm has a 0.18 success rate, and
the remaining seven arms have success rates of 0.10.

In the single simulated experiment illustrating the
first case (top panels of Figure 1), we see that the true
best arm takes an early lead in the adaptive design. By the
end of the 10-period experiment, the true best arm is as-
signed a 0.90 probability of being best in the adaptive de-
sign and a .61 probability of being best in the static trial.

The “clear winner” scenario highlights the advantages of
adaptive design over static design.

In the second case (center panels of Figure 1), the
best arm is only very slightly superior to alternatives. In
this “no clear winner” scenario, we do not correctly iden-
tify the true best arm in either the adaptive or static tri-
als. Indeed, we assign the best arm only 0.13 probabil-
ity of being best, whereas we assign an inferior arm 0.24
probability of being best. For the static experiment, we
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FIGURE 2 Simulated Posterior Probabilities over Time and Cumulative Sample, Control-Augmented
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bilities are as follows:

Case 1: (0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
Case 2: (0.11, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
Case 3: (0.2, 0.18, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

assign the best arm 0.06 probability of being best, and
an inferior arm a 0.36 probability of being best—this is a
case where an inferior arm has overperformed relative to
other arms merely by chance.

In the third case (bottom panels of Figure 1), the
adaptive design assigns the best arm a 0.88 probability of
being best and the second best arm a 0.04 probability of
being best. The static design accords the second-best arm

a 0.66 probability of being best, but gives the true best
arm only a 0.24 probability of being best. This “compet-
ing second-best” scenario illustrates where adaptive de-
signs may help us differentiate between similarly success-
ful treatments.

We repeat these simulations under our proposed
control-augmented adaptive algorithm, presented in
Figure 2, where in each case one of the arms with a
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true success rate of 0.10 is designated as the control
comparison. Posterior probabilities under the control-
augmented design are similar to those under standard
batch-wise Thompson sampling presented in Figure 2.
However, whereas under standard Thompson sampling
treatment assignment probabilities would correspond to
the posterior probabilities, under the control-augmented
algorithm, the cumulative sample assigned to the control
condition is nearly matched to the presumed best arm. In
the first and third cases, this presumed best arm is indeed
the true best arm in our illustrated simulation. In the no
clear winner case, we observe a similar pitfall as under
standard Thompson sampling above, and have mistak-
enly assigned the highest posterior probability of being
best to an inferior arm.

A key feature of adaptive designs is that the probabil-
ity of assignment to each condition is dependent on ob-
served outcomes and varies over time. To account for bias
due to the dependent nature of the assignment proba-
bilities, throughout we use IPW estimators, under which
each observation is weighted by the inverse of the prob-
ability of assignment to the condition that it is in (see
Gerber and Green 2012 for an introduction to IPW; see
Bowden and Trippa 2017 for an investigation of IPW es-
timators in this setting).

These simulations show that adaptive designs tend
to outperform static designs in settings where the re-
search goal is to find the best performing arm. Under
favorable conditions (the first and third cases), the adap-
tive designs do better than the static design, and under
unfavorable conditions (the second case), the standard
Thompson sampling design does slightly better and the
control-augmented version does only slightly worse.
However, this trend does not necessarily follow to other
research goals. In estimation, there are potentially large
gains in precision from adaptivity for the best perform-
ing arms, due to the alignment of sampling probability
with arm performance. We see this reflected in the RMSE
of the best arm in the first and third cases. However, as we
use IPW to facilitate unbiased estimation, fluctuations in
sampling probabilities may increase the variance of our
estimates: Even if we assign more total observations to a
given arm under an adaptive setting than under a static
design, some periods with lower sampling probabilities
can result in an overall higher variance of the estimate.
We see this occur in the second case, where although
we assign on average a larger portion of the sample to
the true best arm in the adaptive setting as compared to
the static design, our estimates of outcomes under the
best arm are less precise. Considering the estimate of the
average treatment effect of the best arm relative to the
control, the control-augmented design represents a large
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improvement over the static design in the first and third
cases. However, if researchers are genuinely interested in
all arms equally, then a static trial that assigns the same
fraction of subjects to each arm will clearly dominate an
adaptive trial.

Empirical Application: Finding the
Best Performing Treatment Arm

Simulations provide useful intuition about the con-
ditions under which adaptive designs are helpful, but
empirical applications allow us to illustrate how these
designs may be implemented and analyzed in settings
relevant to political scientists. Our first empirical ap-
plications address the wording of ballot measures. For
this study, we recruited 1,000 subjects from the Amazon
Mechanical Turk (MTurk) marketplace.'

Design

After answering a series of demographic questions, all
subjects rated two ballot measures, one on minimum
wage and one on right-to-work laws. We adapted the
wording of the proposed measures from real propos-
als, making only minor changes to facilitate consistency
across arms. Our objective in this setting is to estimate
mean outcomes under the most popular ballot measure;
there is no comparison to a control condition, and so
we use standard Thompson sampling. In order to facili-
tate comparisons between alternative sampling methods,
we implemented a composite adaptive-static design: For
each type of ballot measure, subjects were assigned treat-
ment according to Thompson sampling with 90% prob-
ability, and according to balanced simple random assign-
ment with 10% probability.

The minimum wage treatments were drawn from
ballot measures proposed in Colorado, Florida, Illinois,
Nevada, and New Jersey. We generated two versions of
each of these five proposals, varying whether the cur-
rent value of the minimum wage was displayed, re-
sulting in 10 unique minimum wage treatments.!’ The

"Convenience samples obtained on MTurk are far from represen-
tative of the national population but do provide a fertile testing
ground for experimental studies. Recent meta-analyses have re-
vealed a close correspondence of experimental estimates obtained
on MTurk and probability samples (Mullinix et al. 2015; Coppock
2018; Coppock, Leeper, and Mullinix 2018).

"Minimum wage rates are presented in SI E (p. 33). For states that
do not have a state minimum wage, we imputed the federal mini-
mum wage value.
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FIGURE 3 Study 1, Over Time Posterior Probabilities
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right-to-work proposals are described as ‘constitutional amendments’ and ‘BM’ (‘ballot measure’) versions are not.

right-to-work treatments were adapted from ballot mea-
sures in Missouri, North Dakota, Oklahoma, and South
Dakota. For each of these, we created versions that did or
did not describe the ballot measure as a “constitutional
amendment,” resulting in eight unique right-to-work
treatments. For both rating tasks, the outcome question
asked was, “If this measure were on the ballot in your
state, would you vote in favor or against?” The outcome
is defined as a success if the subject responds that they
would vote in favor of the measure. The full text of all
treatments is presented in Table 2. Here, the “best” treat-
ment is the one with the highest associated success rate;
there is no comparison to a baseline control condition.
Our study ran from June 21 to June 30, 2018, and we paid
subjects $1 each for their participation.

Results

We present two sets of results. The first, in Figure 3, is the
over time development of the posterior probability that
each arm is best. The second, in Figure 4, is a straight-
forward comparison of the inverse-probability weighted
average approval of each proposal.

The minimum wage study yielded no clear winner.
The winning arm, by a hair, was Proposal 3 (B, without
current minimum wage), with a probability of being best

0f0.219 and an estimated mean of 0.895 over 183 respon-
dents. This arm was closely followed by Proposal 5 (Y and
N, where “Y” is with and “N” is without minimum wage)
and Proposal 4 (Y, with current minimum wage). Of 10
arms, only two had success rates under 0.8; with similarly
high probabilities of success across several arms, the best
arm was not easily distinguishable. The randomization
inference F-test yielded a p-value of 0.429, indicating that
we cannot reject the sharp null that support is unaffected
by wording nuances.

By contrast, divergence in mean outcomes is readily
apparent in the right-to-work experiment, which early
on revealed a standout arm. Proposal 4 (framed as a
ballot measure) ended with a 0.906 probability of being
best. The second-best arm was also Proposal 4 (framed
as a constitutional amendment) with a probability of be-
ing best of 0.085. The posterior probabilities are based
on the unweighted number of successes and number of
trials, but the probability weighted estimates are 0.926
and 0.934 over 721 and 82 respondents, respectively, and
the difference in the two estimates is statistically indis-
tinguishable from zero. Both versions of Proposal 4 are
highly successful, and we note that the content of this
measure, and its initial emphasis on protection of the
rights to “life, liberty or property,” may make it more
appealing than the alternatives that address union mem-
bership first. The randomization inference F-test yielded
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TABLE 2 Study 1, Treatments and Outcome Measures

Minimum wage

Right to work

Question text

Proposal 1

Proposal 2

Proposal 3

Proposal 4

Proposal 5

Imagine that the following ballot measure were up
for a vote in your state. [ballot measure text]. If
this measure were on the ballot in your state,
would you vote in favor or against? [I would vote
in favor of this measure; I would vote against this
measure]

The measure would: increase the minimum wage
[from {current}] to {current + 1} per hour,
adjusted annually for inflation, and provide that
no more than $3.02 per hour in tip income may
be used to offset the minimum wage of
employees who regularly receive tips.

The measure would: raise the minimum wage
[from {current}] to {current 4 1} per hour
effective September 30, 2021. Each September 30
thereafter, minimum wage shall increase by $1.00
per hour until the minimum wage reaches
{current 4 5} per hour on September 30, 2026.
From that point forward, future minimum wage
increases shall revert to being adjusted annually
for inflation starting September 30, 2027.

The measure reads: Shall the minimum wage for
adults over the age of 18 be raised [from
{current}] to {current + 1} per hour by January
1,20192

The measure would: raise the minimum wage
[from {current}] to {current + 1} per hour
worked if the employer provides health benefits,
or {current + 2} per hour worked if the employer
does not provide health benefits.

The measure would: raise the State minimum wage
rate [from {current}] to at least {current 4 1} per
hour, and require annual increases in that rate if
there are annual increases in the cost of living.

Imagine that the following ballot measure were up
for a vote in your state. [ballot measure text]. If
this measure were on the ballot in your state,
would you vote in favor or against? [I would vote
in favor of this measure; I would vote against

this measure]

The measure would [amend the State
Constitution to]: prohibit, as a condition of
employment, forced membership in a labor
organization (union) or forced payments of
dues or fees, in full or prorata (“fair-share”), to a
union. The measure will also make any activity
that violates employees’ rights provided by the
bill illegal and ineffective and allow legal
remedies for anyone injured as a result of
another person violating or threatening to
violate those employees’ rights. The measure
will not apply to union agreements entered into
before the effective date of the measure, unless
those agreements are amended or renewed after
the effective date of the measure.

The measure [reads/would amend the State
Constitution to read]: The right of persons to
work may not be denied or abridged on account
of membership or nonmembership in any labor
union or labor organization, and all contracts in
negation or abrogation of such rights are hereby
declared to be invalid, void, and unenforceable.

The measure would [amend the State
Constitution to]: ban any new employment
contract that requires employee to resign from
or belong to a union, pay union dues, or make
other payment to a union. Required
contributions to charity or other third party
instead of payments to union are also banned.
Employees must authorize payroll deduction to
unions. Violations of the section is a
misdemeanor.

The measure [reads/would amend the State
Constitution to read]: No person shall be
deprived of life, liberty, or property without due
process of law. The right of persons to work shall
not be denied or abridged on account of
membership or nonmembership in any labor
union, or labor organization.

Note: Boldface text indicates randomly varied elements.
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a p-value of 0.199, indicating that we again cannot reject
the sharp null that support is unaffected by ballot word-
ing. The failure to reject the null in spite of the large range
in arm means is some indication that the randomization
inference test is relatively underpowered in cases where
an adaptive trial allocates the majority of respondents to
a single treatment arm.

We can use these results to inform guesses about how
our experiment would have fared if we had used a stan-
dard static design instead of the adaptive design. The
static design would have sampled each of the 10 arms
in the minimum wage experiment in expectation 100
times each and each of the eight arms in the right-to-
work experiment in expectation 125 times each. Treat-
ing observed success rates as the truth in simulations
of the minimum wage experiment, we picked the best
proposal 47% of the time in adaptive experiments and
37% of the time in static experiments. In the right-
to-work experiment, where there are two strong con-
tenders, we picked the best proposal 65% of the time
in adaptive experiments and 58% of the time in static
experiments.

FIGURE 4 Study 1, Mean Vote Outcomes
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Typically when analyzing an experiment, we estimate
arm-specific means and provide associated standard er-
rors. Considering Figure 4, we note that a feature of the
adaptive design is that the proposals with the highest suc-
cess rates also have the smallest standard errors, as these
arms tend to receive more subjects than arms with lower
success rates. This feature may be desirable when estima-
tion of average performance of the best arm is considered
a priority by the researcher and estimates of average suc-
cess rates of poorly performing arms are not of particu-
lar interest. For the minimum wage experiment, standard
errors around our estimate of the success rate for the best
arm in a simulated static design would have been, on av-
erage, 90% as large as those under a comparable adaptive
design. This reflects the cost in variance of due to fluctu-
ations in inverse probability weights in the adaptive de-
sign, when the best arm does not quickly achieve a high
sampling probability. For the right-to-work experiment,
standard errors on the success rate of the best arm in a
static experiment would have been on average 133% as
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there is a standout arm, the adaptive design appears to
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offer advantages in terms of the precision with which the
best performing arm’s success rate is evaluated.

Empirical Application: Adaptive
Trials with a Control Condition

This section illustrates our algorithm for adaptive tri-
als with a control condition using an example from the
growing literature on partisan bias in public opinion.
For decades, scholars have noted the “perceptual screen”
through which party loyalists absorb and retain factual
information (Campbell et al. 1960, p. 133). Partisans
are predictably buoyant or gloomy depending on which
party holds the presidency. For example, Democrats and
Republicans have markedly different recollections of past
economic performance (Bartels 2002) and assessments of
current and future conditions (Gerber and Huber 2010).
A lively theoretical and empirical literature focuses on the
question of what can be done to reduce partisan bias. To
what extent do survey respondents rein in their partisan
impulses when offered financial incentives for accuracy
(Bullock et al. 2015; Khanna and Sood 2018; Prior et al.
2015)? What if respondents are urged to put aside parti-
san biases when answering factual questions (Prior et al.
2015)? What if they are given extra time to reflect on their
answers or to consult factual sources (Prior and Lupia
2008)? All of these methods for inducing factual accuracy
have received support, and the purpose of the experiment
that follows is to discern which works best and whether
any of these methods produce appreciable gains vis-a-vis
an untreated control group.

Design

Our outcome measures are responses to three factual
questions listed in Table 3. These questions address
trends in budget deficits, black unemployment, and farm
income between the Obama and Trump years. As ex-
pected, responses to these questions are highly corre-
lated with respondent party. For example, restricting
our attention to those asked the control version of each
question, we see that 24% of Republicans and 62% of
Democrats reported that the deficit had grown under
Trump; 75% and 34% reported that black unemploy-
ment had decreased; and 22% and 59% said that farm
income had declined. Our aim, however, is not to com-
pare Republicans to Democrats. Rather, we conduct sep-
arate randomized trials within each partisan subgroup to
see what encourages increased accuracy.
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Drawing on the recent literature, we implement a
six-arm trial, with a control condition and each of five
treatment arms representing a somewhat different the-
oretical approach. As shown in Table 4, the treatment
conditions amount to variations in the instructions and
encouragements given to respondents. The Lottery treat-
ment is a financial incentive, whereby accurate answers
increase respondents’ odds of winning a $100 gift certifi-
cate. Second, the Accuracy treatment instructs respon-
dents to “answer these questions as accurately as you
can.” The Directional treatment encourages respondents
to put aside their partisan bias: “We know from past
surveys that people tend to root for their own political
party, but often the right answer is not the one that fa-
vors one’s own party. Please be sure to think objectively
— without any partisan bias — about true economic con-
ditions before answering.” The Extra Time condition al-
lots respondents 45 seconds to formulate an answer (and
prevents them from advancing to the next question dur-
ing that time). Finally, the Google treatment encourages
respondents to look up the correct answers: “We know
from past surveys that sometimes people use Google to
look up the answers to questions like these. For this
survey, it is OK to use Google!” Respondents were as-
signed the same treatment condition for all three ques-
tions, and our analysis therefore must account for the
fact that the assignment for each question-respondent
pair is effectively clustered by respondent. Our outcome
was scored 1 if the respondent supplied the correct an-
swer and 0 otherwise. To avoid posttreatment bias, we
scored respondents who did not provide any answer at
all as 0 as well (Coppock 2019; Montgomery, Nyhan, and
Torres 2018).

Using the Lucid platform, we gathered approxi-
mately 300 observations per day for a total of 10 days and
updated treatment assignment probabilities after each
batch of data collected.!? Our study ran from Novem-
ber 27 to December 10, 2019, and subjects were paid $1
for their participation. In the first batch, we assigned all
treatment conditions and the control with equal proba-
bility. In subsequent periods, allocation to experimental
group was conducted separately for Democrats and Re-
publicans, whose party identification is measured using
the conventional ANES wording early in the survey, prior

12Like MTurk samples, Lucid samples are online convenience sam-
ples that are not necessarily representative of the national popula-
tion. That said, respondents on Lucid are quota sampled to match
U.S. census demographic margins, ensuring sample diversity on
many important dimensions (Coppock and McClellan 2019).
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TABLE 3 Study 2, Questions and Outcome Measures
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Deficit

Net farm income

Black unemployment

Question text

Binary response

Continuous response

Answers

In 2016, the last year of
the Obama presidency,
the deficit was 3.1% of
GDP. We are now 3
years into the Trump
presidency. Would you
say that the deficit has
gotten better, gotten
worse, or stayed the
same in relation to the
GDP?

The U.S. Department of
Agriculture tracks the
financial well-being of
American farmers. An
important indicator is
Net Farm Income,
which measures how
much money farmers
make after expenses.
In 2013, 4 years into
the Obama presidency,
Net Farm Income was
120 billion. We are
now 3 years into the
Trump presidency.
Would you say that
Net Farm Income has
gotten worse, gotten
better, or stayed the
same?

The U.S. Bureau of Labor
Statistics counts a
person as unemployed
if they are not
currently working and
are looking for work.
At the end of 2011, 3
years into the Obama
presidency, the
unemployment rate
for black Americans
was 15%. We are now
3 years into the Trump
presidency. Would you
say that the
unemployment rate
for black Americans
has gotten worse,
gotten better, or stayed
the same?

[Gotten worse, Gotten better, Stayed the same] Coded as 1 if correct, 0 otherwise

If you had to guess, what
is the current deficit as

a percentage of GDP?
[numeric entry]

In fiscal year 2019, the
federal government
estimates that the
deficit will be 5.1% of
GDP, which means
that the deficit has
gotten worse since
2016.

If you had to guess, what
is the value of Net

Farm Income this year,
in billions? [numeric
entry]

In fiscal year 2019, Net
Farm Income was 90
billion, which means
that Net Farm Income
has gotten worse since
2013.

If you had to guess, what
is the current
unemployment rate

for black Americans?
[numeric entry]

As of September 2019,
the unemployment
rate for black
Americans was 5.5%,
which means that the
unemployment rate
for black Americans
has gotten better since
2011.

to random assignment.'?*!* Thus, we have in effect two
separate adaptive trials, one for each partisan group.

"We could not know exactly how many units would enter in each
batch, because we split fixed-size batches based on self-reported
party identification that is revealed during the course of the survey.
To account for this complication, we based allocation procedures
on the expected batch size.

“We coded independent “leaners” as partisans. “Pure” indepen-
dents were allocated separately as part of their own adaptive trial,
but their numbers are small (n = 568), so we report these and other
additional analyses in SI F (p. 34).

Turning first to the Republican respondents, we see
from Figure 5 that the lottery incentive led the entire
way and was the only treatment arm that outperformed
the control. In the end, the unadjusted estimate indi-
cates a 4.1 percentage point increase in accuracy with a
1.7 percentage point standard error, as shown in Figure 6.
The fact that we obtain a standard error as small as 1.7
reflects the fact that the adaptive design allocated 552 of
1,258 Republicans to the Lottery condition, with another
493 assigned to control. Had we implemented a static de-
sign with equal allocation to all six conditions, based on
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TABLE4 Study 2, Treatments and Reminders

Subjects assigned to the control condition proceed directly to the outcome questions. Subjects assigned to one of the five treatment

conditions first see a preamble that delivers the treatment. Then, when they proceed to the outcome questions, they are reminded of

the treatment.
Preamble

Reminder

Lottery

Accuracy

Direction

Extra time

Google

In this next section, you will be asked some questions about how well
the economy is doing. As you probably know, the government
gathers a lot of statistical information about the economy. Not
everyone pays attention to these statistics or remembers them after
they have heard them. In this study we would like to learn whether
this information is finding its way to the general public. For each
correct answer, we will award you an extra chance to win a lottery
for a $100 Amazon gift card. You will earn an additional extra
chance for every correct answer you give. The more questions you
answer correctly, the better your chances are to win. At the end of
this study, you will see a summary of how many questions you
answered correctly.

In this next section, you will be asked three questions about how well
the economy is doing. As you probably know, the government
gathers a lot of statistical information about the economy. Not
everyone pays attention to these statistics or remembers them after
they have heard them. In this study we would like to learn whether
this information is finding its way to the general public. The
questions that follow have right and wrong answers. In order for
your answers to be most helpful to us, it is really important that
you answer these questions as accurately as you can. At the end of
this study, you will see a summary of how many questions you
answered correctly.

In this next section, you will be asked some questions about how well
the economy is doing. As you probably know, the government
gathers a lot of statistical information about the economy. Not
everyone pays attention to these statistics or remembers them after
they have heard them. In this study we would like to learn whether
this information is finding its way to the general public. We know
from past surveys that people tend to root for their own political
party, but often the right answer is not the one that favors one’s

own party. Please be sure to think objectively—without any

partisan bias — about true economic conditions before answering.

In this next section, you will be asked some questions about how well
the economy is doing. As you probably know, the government
gathers a lot of statistical information about the economy. Not
everyone pays attention to these statistics or remembers them after
they have heard them. In this study we would like to learn whether
this information is finding its way to the general public. So that you
are not rushed in any way, we will give you extra time to complete
each set questions. The “next” button will appear after 45 seconds

so that you will have plenty of time to consider your answers.

In this next section, you will be asked some questions about how well
the economy is doing. As you probably know, the government
gathers a lot of statistical information about the economy. Not
everyone pays attention to these statistics or remembers them after
they have heard them. In this study we would like to learn whether
this information is finding its way to the general public. We know
from past surveys that sometimes people use Google to look up the
answers to questions like these. For this survey, it is OK to use
Google! We just want to know what site you went to, so we’ll ask
you to copy-paste the link in. Of course, there is no need to search
for the answer if you do not want to.

As a reminder, for each correct answer, we will award you an
extra chance to win a lottery for a $100 Amazon gift card.
You will earn an additional extra chance for every correct
answer you give. The more questions you answer

correctly, the better your chances are to win. At the end of
this study, you will see a summary of how many questions
you answered correctly.

As a reminder, these questions have right and wrong
answers. In order for your answers to be most helpful to
us, it is really important that you answer these questions
as accurately as you can. At the end of this study, you will
see a summary of how many questions you answered
correctly.

As a reminder, we know from past surveys that people tend
to root for their own political party, but often the right
answer is not the one that favors one’s own party. Please
be sure to think objectively—without any partisan
bias—about true economic conditions before answering.

As a reminder, the “next” button will appear after 45
seconds so that you will have plenty of time to consider
your answers

As a reminder, we know from past surveys that sometimes
people use Google to look up the answers to questions
like these. For this survey, it is OK to use Google! We just
want to know what site you went to, so we’ll ask you to
copy-paste the link in. Of course, there is no need to
search for the answer if you do not want to.
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FIGURE 5 Study 2, Overtime Posterior Probabilities
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simulations the standard error would have been on aver-
age 2.5 percentage points (we present estimates and con-
fidence intervals from simulated experiments under the
static design in SI E.3, p. 36). One of the advantages of a
control-augmented adaptive design in this context is that
one emerges with a more precise assessment of the lead-
ing arm’s causal effect. In this particular case, the adap-
tive design with the smaller standard error allows us to
declare the 4.1-point average effect of the accuracy treat-
ment statistically significant (p = 0.014), whereas un-
der that static design the effect would not have attained
statistical significance (p = 0.152). Using randomization
inference, we reject the null of no difference across treat-
ments (p = 0.028).

The trial involving Democrats illustrates how the
gains from adaptive design may be more muted when
multiple treatment arms generate similarly strong effects.
Although Lottery won with a narrow lead, Democrats
also responded to the Accuracy and Google encourage-
ments. Thus, the subject pool was spread relatively evenly
across conditions, with Extra Time being the sole arm
that was ruled out early on. In the end, Lottery was
significantly better than the control by 7.1 percentage
points (unadjusted, p = 0.007) or 5.3 percentage points

(adjusted, p = 0.03). Using randomization inference, we
again reject the null (p = 0.013)."°

Discussion

The growth and development of experimentation in the
social sciences has led to increasing sophistication in the
design of multiarm trials. Although the adaptive alloca-
tion of subjects to treatment arms over time adds com-
plexity to a trial’s implementation and analysis, the pay-
off may be considerable. When one arm is truly supe-
rior to the others, an adaptive trial can locate the winning
arm more reliably than a static design. Moreover, because
the adaptive trial allocates more sample to the winning
arm, the experimenter learns more about the attributes
of the winner at the conclusion of the study. Our simula-
tions and the empirical example of right-to-work ballot

Had we used the batched OLS approach proposed by Zhang,
Janson, and Murphy (2020) discussed in SI B.1 (p. 6) to account
for nonnormality, the p-values for the ATE of the Lottery condi-
tion rise slightly, with p = 0.026 for Republicans and p = 0.018
for Democrats.
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FIGURE 6 Study 2, Average Treatment Effect Estimates
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Note: Estimates are inverse probability weighted. Standard errors are bias-reduced linearization CR2 adjusted, clustered at the
respondent level. Covariate-adjusted estimates control for age, gender, education, race, political ideology, political attentiveness,

and partisanship.
*p < 0.05.

measures illustrate just how valuable adaptive designs
can be in the context of a truly superior arm. The level of
public support for the winning right-to-work ballot mea-
sure was estimated with a standard error that was 75% as
large as would have been the case under a static design.
The adaptive allocation of subjects, however, is of less
value when no treatment arm truly stands above the oth-
ers. In such cases, adaptive allocation follows clues that
are the product of sampling variability rather than the
true superiority of an arm. As the minimum wage appli-
cation suggests, at best an adaptive design winnows out
some inferior arms. In this application, however, the cost
in variance from extreme inverse probability weights re-
sulted in a less precise estimate of the best arm outcome.
This point also holds for studies in which the aim
is to compare treatment arms to an untreated control
group. One component of the design aims to locate
the best performing treatment arm, but the offsetting
component ensures that the control group always re-
ceives ample subjects regardless of how it performs over
the trial. When one treatment arm is truly superior,
this design will allocate substantially more subjects to it
and will therefore render a more precise estimate of the

treatment effect vis-a-vis the control group. On the other
hand, the gains may be negligible if the treatment arms
are in fact similarly effective.

One important research frontier is the efficient allo-
cation of sample in the context of highly factorial designs
like conjoint experiments. Because the number of possi-
ble treatment arms is large relative to the number of sub-
jects, adaptive design alone may be unable to isolate the
best treatment combination with high probability over
a fixed data collection schedule. In this case, adaptive
design requires the assistance of modeling assumptions,
such as additive effects, to reduce the set of promising
treatment combinations. In the SI, we present an empir-
ical demonstration of this approach.

Another important research frontier is designing
adaptive trials when the true underlying performance of
the treatment arms is believed to be changing over time.
For example, an adaptive trial designed to gauge the po-
litical campaign ad that attracts the most support for the
advertising candidate might operate in a fast-moving en-
vironment in which a candidate’s popularity erodes over
time. An adaptive trial might start out with one front-
running ad, allocate more sample to it, and then see



ADAPTIVE EXPERIMENTAL DESIGN

the apparent performance of that ad deteriorate as the
candidate’s popularity drifts downward. Future research,
building on the work of Granmo and Berg (2010) and
Gupta, Granmo, and Agrawala (2011), will need to grap-
ple with the added complexity of dynamics in both the
design and analysis of adaptive trials.

A final challenge is to expand the framework of
response-adaptive algorithms to potentially change the
portfolio of treatment arms. In principle, an algorithm
could inform researchers that it is time to develop new
treatment arms because the existing ones are inadequate,
either because all treatment arms perform below some
preset standard or because none performs better than the
control arm. This approach is akin to what researchers
currently do informally when they conduct a pilot study
and conclude that the results do not look sufficiently
promising to warrant further experimentation with
the treatments at hand. Under an expanded adaptive
framework, the scope of exploration widens. Arms
are compared not only to one another but also to the
potential value of arms that have yet to be tested.

References

Agrawal, Shipra, and Navin Goyal. 2012. “Thompson Sampling
for Contextual Bandits with Linear Payoffs.” arXiv e-prints
arXiv:1209.3352v4 [cs.LG].

Bartels, Larry. 2002. “Beyond the Running Tally: Partisan Bias
in Political Perceptions.” Political Behavior 24(2): 117-50.

Berman, Ron, Leonid Pekelis, Aisling Scott, and Christophe
Van den Bulte. 2018. “p-Hacking and False Discovery in A/B
Testing.” SSRN, accessed October 4, 2020, https://doi.org/
10.2139/ssrn.3204791.

Berry, Donald A., and Bert Fristedt. 1985. Bandit Problems: Se-
quential Allocation of Experiments. New York and London:
Chapman and Hall.

Blair, Graeme, Jasper Cooper, Alexander Coppock, Macartan
Humpbhreys, and Luke Sonnet. 2020. estimatr: Fast Estima-
tors for Design-Based Inference. R package version 0.22.0.
https://CRAN.R-project.org/package=estimatr

Bowden, Jack, and Lorenzo Trippa. 2017. “Unbiased Estima-
tion for Response Adaptive Clinical Trials.” Statistical Meth-
ods in Medical Research 26(5): 2376-88.

Bullock, John G., Alan S. Gerber, Seth J. Hill, Gregory A. Huber,
et al. 2015. “Partisan Bias in Factual Beliefs about Politics.”
Quarterly Journal of Political Science 10(4): 519-78.

Campbell, Angus, Philip E. Converse, Warren E. Miller, and
Donald E. Stokes. 1960. The American Voter. New York: Wi-
ley.

Chin, Richard. 2016. Adaptive and Flexible Clinical Trials. Boca
Raton: CRC Press.

843

Chow, Shein-Chung, and Mark Chang. 2008. “Adaptive Design
Methods in Clinical Trials—A Review.” Orphanet Journal of
Rare Diseases 3(1): 11.

Coppock, Alexander. 2018. “Generalizing from Survey Exper-
iments Conducted on Mechanical Turk: A Replication Ap-
proach.” Political Science Research and Methods 1-16.

Coppock, Alexander. 2019. “Avoiding Post-Treatment Bias in
Audit Experiments.” Journal of Experimental Political Sci-
ence6(1): 1-4.

Coppock, Alexander, and Oliver A. McClellan. 2019. “Val-
idating the Demographic, Political, Psychological, and
Experimental Results Obtained from a New Source of
Online Survey Respondents.” Research ¢ Politics 6(1):
2053168018822174.

Coppock, Alexander, Thomas J. Leeper, and Kevin J. Mullinix.
2018. “Generalizability of Heterogeneous Treatment Ef-
fect Estimates Across Samples.” Proceedings of the National
Academy of Sciences 115(49): 12441-46.

Dimakopoulou, Maria, Zhengyuan Zhou, Susan Athey,
and Guido Imbens. 2017. “Estimation Considerations in
Contextual Bandits.” arXiv e-prints arXiv:1711.07077v4
[stat. ML].

Dimmery, Drew, Eytan Bakshy, and Jasjeet Sekhon. 2019.
“Shrinkage Estimators in Online Experiments.” arXiv e-
preprints arXiv:1904.12918v1 [stat. ME].

Gerber, Alan S., and Donald P. Green. 2012. Field Experiments:
Design, Analysis, and Interpretation. New York: W.W. Nor-
ton.

Gerber, Alan S., and Gregory A. Huber. 2010. “Partisanship,
Political Control, and Economic Assessments.” American
Journal of Political Science 54(1): 153-73.

Graepel, Thore, Joaquin Quifionero Candela, Thomas
Borchert, and Ralf Herbrich. 2010. “Web-Scale Bayesian
Click-Through Rate Prediction for Sponsored Search
Advertising in Microsoft’s Bing Search Engine.” In
Proceedings of the 27th International Conference on Ma-
chine Learning (ICML 2010) (ICML-10), June 21-24,
2010, Haifa, Israel, eds. J. Fiirnkranz and T. Joachims.
Omnipress, pp. 13-20. Accessed October 4, 2020,
https://discovery.ucl.ac.uk/id/eprint/1395202

Granmo, Ole-Christoffer, and Stian Berg. 2010. “Solving Non-
Stationary Bandit Problems by Random Sampling from
Sibling Kalman Filters.” In 23rd International Conference
on Industrial Engineering and Other Applications of Ap-
plied Intelligent Systems, IEA/AIE 2010, Cordoba, Spain,
June 1-4, 2010, Proceedings, Part III (IEA-AIE 2010), eds.
Nicoléds Garcia-Pedrajas, Francisco Herrera, Colin Fyfe, José
Manuel Benitez, and Moonis Ali. Vol. 6098 of Lecture Notes
in Computer Science Berlin, Heidelberg: Springer-Verlag,
pp- 199-208. Accessed October 4, https://doi.org/10.1007/
978-3-642-13033-5_21.

Gupta, Neha, Ole-Christoffer Granmo, and Ashok Agrawala.
2011. Thompson Sampling for Dynamic Multi-Armed Ban-
dits. In Proceedings of the 2011 10th International Conference
on Machine Learning and Applications and Workshops - Vol-
ume 01. ICMLA 11 Washington, DC: IEEE Computer Soci-
ety pp. 484-489. Accessed October 4, 2020, https://doi.org/
10.1109/ICMLA.2011.144.

Hainmueller, Jens, and Dominik Hangartner. 2013. “Who
Gets a Swiss Passport? A Natural Experiment in Immigrant


https://doi.org/10.2139/ssrn.3204791
https://doi.org/10.2139/ssrn.3204791
https://CRAN.R-project.org/package=estimatr
https://discovery.ucl.ac.uk/id/eprint/1395202
https://doi.org/10.1007/978-3-642-13033-5_21
https://doi.org/10.1007/978-3-642-13033-5_21
https://doi.org/10.1109/ICMLA.2011.144
https://doi.org/10.1109/ICMLA.2011.144

844

Discrimination.” American Political Science Review 107(1):
159-87.

Khanna, Kabir, and Gaurav Sood. 2018. “Motivated Respond-
ing in Studies of Factual Learning.” Political Behavior 40(1):
79-101.

Lei, Huitian, Ambuj Tewari, and Susan A. Murphy. 2017.
“An Actor-Critic Contextual Bandit Algorithm for Per-
sonalized Mobile Health Interventions.” arXiv e-prints
arXiv:1706.09090v1 [stat.ML].

Li, Lihong, Wei Chu, John Langford, and Robert E. Schapire.
2010. “A Contextual-Bandit Approach to Personalized
News Article Recommendation.” arXiv e-prints arXiv:1003.
0146v2 [cs.LG].

Locatelli, Andrea, Maurilio Gutzeit, and Alexandra Carpentier.
2016. “An Optimal Algorithm for the Thresholding Bandit
Problem.” arXiv e-prints arXiv:1605.08671v1 [stat. ML].

Lotze, Thomas, and Markus Loecher. 2014. Bandit: Functions
for Simple A/B Split Test and Multi-Armed Bandit Analy-
sis. R package version 0.5.0. https://CRAN.R-project.org/
package=bandit

Ludwig, Jens, Jeffrey R. Kling, and Sendhil Mullainathan. 2011.
“Mechanism Experiments and Policy Evaluations.” Journal
of Economic Perspectives 25(3): 17-38.

Montgomery, Jacob M., Brendan Nyhan, and Michelle Torres.
2018. “How Conditioning on Posttreatment Variables Can
Ruin Your Experiment and What to Do about It.” American
Journal of Political Science 62(3): 760-75.

Mullinix, Kevin J., Thomas J. Leeper, James N. Druckman, and
Jeremy Freese. 2015. “The Generalizability of Survey Exper-
iments.” Journal of Experimental Political Science2:109-38.

Murphy, Susan A. 2003. “Optimal Dynamic Treatment
Regimes.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 65(2): 331-55.

Nie, Xinkun, Xiaoying Tian, Jonathan Taylor, and James
Zou. 2017. “Why Adaptively Collected Data Have Neg-
ative Bias and How to Correct for It.” arXiv e-prints
arXiv:1708.01977v2 [stat. ML].

Olken, Benjamin A. 2007. “Monitoring Corruption: Evidence
from a Field Experiment in Indonesia.” Journal of Political
Economy 115(2): 200-49.

Pallmann, Philip, Alun W. Bedding, Babak Choodari-Oskooei,
Munyaradzi Dimairo, Laura Flight, Lisa V. Hampson, Jane
Holmes, Adrian P. Mander, Matthew R. Sydes, Sofia S. Vil-
lar, et al. 2018. “Adaptive Designs in Clinical Trials: Why
UseThem, and How to Run and Report Them.” BMC
Medicine 16(1): 29.

Prior, Markus, and Arthur Lupia. 2008. “Money, Time, and Po-
litical Knowledge: Distinguishing Quick Recall and Political
Learning Skills.” American Journal of Political Science 52(1):
169-83.

Prior, Markus, Gaurav Sood, Kabir Khanna, et al. 2015. “You
Cannot Be Serious: The Impact of Accuracy Incentives on
Partisan Bias in Reports of Economic Perceptions.” Quar-
terly Journal of Political Science 10(4): 489-518.

Russo, Daniel, Benjamin Van Roy, Abbas Kazerouni, Ian Os-
band, and Zheng Wen. 2017. “A Tutorial on Thompson
Sampling.” arXiv e-prints arXiv:1707.02038v3 [cs.LG].

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforce-
ment Learning: An Introduction. Cambridge, MA: MIT
Press.

MOLLY OFFER-WESTORT, ALEXANDER COPPOCK, DONALD P. GREEN

Sydes, Matthew R., Mahesh K. B. Parmar, Malcolm D. Mason,
Noel W. Clarke, Claire Amos, John Anderson, Johann de
Bono, David P. Dearnaley, John Dwyer, Charlene Green,
Jordana Jovic, Alistair W. S. Ritchie, J. Martin Russell,
Karen Sanders, George Thalmann, and Nicholas D. James.
2012. “Flexible Trial Design in Practice-Stopping Arms for
Lack-of-Benefit and Adding Research Arms Mid-Trial in
STAMPEDE: A Multi-Arm Multi-Stage Randomized Con-
trolled Trial.” Trials 13(1): 168.

Thompson, William R. 1933. “On the Likelihood that One Un-
known Probability Exceeds Another in View of the Evidence
of Two Aamples.” Biometrika 25(3/4): 285-94.

Thompson, William R. 1935. “On the Theory of Apportion-
ment.” American Journal of Mathematics 57(2): 450-56.

Trippa, Lorenzo, Eudocia Q. Lee, Patrick Y. Wen, Tracy T.
Batchelor, Timothy Cloughesy, Giovanni Parmigiani, and
Brian M. Alexander. 2012. “Bayesian Adaptive Random-
ized Trial Design for Patients with Recurrent Glioblastoma.”
Journal of Clinical Oncology 30(26): 3258.

Urteaga, Idigo, and Chris H. Wiggins. 2017. “Bayesian
Bandits: Balancing the Exploration-Exploitation Tradeoff
Via Double Sampling.” arXiv e-prints arXiv:1709.03162v2
[stat. ML].

Villar, Sofia S., Jack Bowden, and James Wason. 2015. “Multi-
Armed Bandit Models for the Optimal Design of Clinical
Trials: Benefits and Challenges.” Statistical Science 30(2):
199.

Wason, James M.S., and Lorenzo Trippa. 2014. “A Comparison
of Bayesian Adaptive Randomization and Multi-Stage De-
signs for Multi-Arm Clinical Trials.” Statistics in Medicine
33(13): 2206-21.

Wason, James M.S., Peter Brocklehurst, and Christina Yap.
2019. “When to Keep It Simple—Adaptive Designs Are Not
Always Useful.” BMC Medicine 17(1): 1-7.

Wei, L.J.. 1988. “Exact Two-Sample Permutation Tests Based on
the Randomized Play-the-Winner Rule.” Biometrika 75(3):
603-6.

Young, Alwyn. 2019. “Channeling Fisher: Randomization Tests
and the Statistical Insignificance of Seemingly Significant
Experimental Results.” The Quarterly Journal of Economics
134(2): 557-98.

Zhang, Kelly W., Lucas Janson, and Susan A. Murphy.
2020. “Inference for Batched Bandits.” arXiv e-prints
arXiv:2002.03217v2 [cs.LG].

Supporting Information

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Appendix A: Algorithms

Appendix B: Estimation and theory

Appendix C: Worked Examples

Appendix D: Additional Simulations

Appendix E: Additional Information, Study One
Appendix F: Additional Analyses, Study Two
Appendix G: Study Three: An Adaptive Conjoint Trial


https://CRAN.R-project.org/package=bandit
https://CRAN.R-project.org/package=bandit

