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A Algorithms

We suppose that K arms have unknown success rates θ1, . . . , θK , following their respective

Bernoulli distributions, with likelihoods

fX1|Θ1(x1|θ1), . . . , fXK |ΘK
(xK |θK).

Posteriors follow Beta distributions with parameters αk,t, βk,t.

Algorithm 1: Batch-wise Thompson sampling

1: Initialize priors such that (αk,1 = 1, βk,1 = 1) for k = 1, . . . , K.

For periods t = 1, . . . , T :

2: Calculate pk,t = P
[
Θk = max

k
{Θ1, . . . ,ΘK}|(α1,t, β1,t), . . . , (αK,t, βK,t)

]
for k =

1, . . . , K.1

3: Sample n observations, assigning treatment with probabilities (p1,t, . . . , pK,t).

4: Update posteriors, for k = 1, . . . , K:

αk,t+1 = αk,t + # successes observed for arm k in period t,

βk,t+1 = βk,t + # failures observed for arm k in period t.

Algorithm 2: Control-augmented Thompson sampling

1: Let C index the control arm. Initialize priors such that (αk,1 = 1, βk,1 = 1) for k 6= C.

For periods t = 1, . . . , T :

2: Calculate pk,t as above in step 2, excluding C.

1See C.2 for a worked mathematical example; alternatively, the relative probabilities can

be determined by sampling from the implied posterior distributions.
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3: Retrieve the “current best arm,” and calculate the difference between the cumu-

lative sample assigned to that arm and the control arm:

b = argmax
k

pk,t,

d = nb,t − nC,t.

4: Calculate the proportion of the next batch needed for the control to match the

cumulative sample of the “best” arm, up to a maximum of Zt of the batch, where

Zt ∈ (0, 1) may be fixed, or may be data adaptive:

q = min(max(d/n, 0), Zt).

5: The probability of assignment to the control condition is a combination of the

allocation to match the cumulative sample of the control to the current best arm,

and Rt of the remaining probability, for Rt ∈ (0, 1). This value may be fixed, or

may also be data adaptive:

p̃C,t = q +Rt ∗ (1− q).

6: The treatment arms are assigned according to their posterior probabilities, scaled

to the remaining sampling probability, for k 6= C:

p̃k,t = pk,t ∗ (1−Rt) ∗ (1− q).

7: Sample n observations, assigning treatment with probabilities (p̃1,t, . . . , p̃C,t, . . . , p̃K,t).
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8: Update posteriors, for k 6= C:

αk,t+1 = αk,t + # successes observed for arm k in period t,

βk,t+1 = βk,t + # failures observed for arm k in period t.

In simulations and experiments, we set Zt in step 4 as fixed at .90, and Rt in steps 5

and 6 as fixed at 1/K. However, these values may be revised by the researcher; in particular,

in relatively small samples, we may want to allow the control arm to “catch up” to the

best treatment arm to facilitate approximate balance, even as the arm we identify as “best”

changes across batches. After early fluctuations, researchers may wish to let Zt approach

zero and Rt approach a fixed value, so that the portion of the batch allocated to allow the

control to catch up (step 4) shrinks to zero, and the remaining probability assigned to the

control (step 5) approaches R. The optimal rate of decay in particular for small sample

performance, however, will depend on the context of the experiment.

Furthermore, for simplicity, we have assumed equal variance of outcomes under the best

treatment arm and the control arm, in which case the optimal allocation of treatment is

balanced between the best treatment arm and the control. Letting Zt approach zero and Rt

approach 2, our algorithm will approach this optimal allocation. However, if the variances

are not equal, under, e.g., a Hájek-style estimator (Hájek 1971), variance of the estimator can

be minimized by assigning treatment proportional to the relative standard deviations of the

two arms. Under a Horvitz-Thompson-style estimator, (Horvitz and Thompson 1952), with

simple random assignment, optimal assignment is a function of the raw moments.2 Robbins

(1952) proposes a two-stage sequential design to learn these values and assign treatment

according to them; Dimmery (2018) extends this approach to an algorithm that learns and

updates continuously. Here, Rt could be learned adaptively in a similar manner.

2We thank Peter Aronow for discussion on these points, among many others.
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B Estimation and theory

B.1 Alternative estimation procedures

For estimation and hypothesis testing, we have assumed that there is a unique best arm.

When this is not the case, hypothesis testing becomes more challenging; more general meth-

ods for inference on adaptively collected data have been proposed by Hadad et al. (2019),

Deshpande et al. (2020) and Zhang et al. (2020). The estimators described here rely on

martingale central limit theorems for asymptotic consistency.

Hadad et al. (2019) propose an augmented version of the IPW estimator, which allows

for an optional conditional means model with evaluation weights that, under specified condi-

tions, achieves asymptotic normality for adaptively weighted estimates even in the no-signal

setting. When there is a unique best arm, however, these necessary conditions for asymptotic

normality of IPW-type estimators may hold in the absence of evaluation weights.

Deshpande et al. (2020) propose a W-decorrelation estimator, under which they augment

the standard OLS estimate with a decorrelation matrix. This matrix is a function of a tuned

regularization parameter, which trades off bias and variance.

Zhang et al. (2020) propose a “batched” OLS hypothesis testing procedure, noting the

asymptotic normality of OLS estimates within batches. They construct a test statistic by

combining batch-wise t-statistics and compare it to a simulated null distribution in order to

obtain a p-value. The authors demonstrate that this testing procedure has reliable Type-1

error control in small samples and is robust to non-stationarity.

Even with a unique best arm, our simulations and those presented elsewhere have demon-

strated the possibility that in small samples, even robust confidence intervals may under-

cover. The “sufficient” experiment size for valid coverage will depend on the value of the

best arm relative to the other arms, or the signal-to-noise ratio (Zhang et al. 2020). When

in doubt, researchers have several options: simulations tailored to a specific application may
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be helpful in determining whether undercoverage is a concern; to ensure valid coverage for

small samples, researchers may use conservative methods, such as uniformly valid confidence

sequences (Howard et al. 2018); or they may use the “batched” OLS procedure proposed by

Zhang et al. (2020).

B.2 Finite-n unbiasedness of the Horvitz-Thompson estimator un-

der adaptive assignment

We consider estimation using a Horvitz-Thompson-style estimator (Horvitz and Thompson

1952). We demonstrate the unbiasedness of the estimator here, but see Bowden and Trippa

(2017) for further investigation of this and other estimators in the adaptive setting. Let Si

be the state, defined by the history of treatment and outcomes observed prior to assigning

treatment to observation i. This is to account for the differences in treatment assignment

probabilities across runs of the experiment. In batch-wise designs, this history will be the

same for all observations within a given batch.

For treatment Ki, define πi(k;Si) = Pr[Ki = k|Si].

µ̂HTk =
1

N

N∑
i=1

Yi
1{Ki = k}
πi(k;Si)

By design, πi(k;Si) > 0,∀i, k.

Under the potential outcomes framework: E
[
µ̂HTk

]
= E [Yi(k)] .

We require only independence of potential outcomes and treatment conditional on history,

7



Yi(k) ⊥⊥ Ki|Si, which is given by the experimental design.

E
[
µ̂HTk

]
= E

[
1

N

N∑
i=1

Yi
1{Ki = k}
πi(k;Si)

]

=
1

N

N∑
i=1

E

[
Yi
1{Ki = k}
πi(k;Si)

]
.

Considering the ith unit, by the Law of Iterated Expectations,

E

[
Yi
1{Ki = k}
πi(k;Si)

]
= E

[
E

[
Yi
1{Ki = k}
πi(k;Si)

∣∣∣∣Si]]

Taking the interior term, E

[
Yi

1{Ki=k}
πi(k;Si)

∣∣∣∣Si], by definition,

= E

[
Yi1{Ki = k}
Pr[Ki = k|Si]

∣∣∣∣Si]

By the potential outcomes model,

= E

[
Yi(k)× 1{Ki = k}

Pr[Ki = k|Si]

∣∣∣∣Si]

And because Yi ⊥⊥ Ki|Si,

= E [Yi(k)|Si]× E

[
1{Ki = k}

Pr[Ki = k|Si]

∣∣∣∣Si]
= E [Yi(k)|Si]×

E [1{Ki = k}|Si]
Pr[Ki = k|Si]

= E [Yi(k)|Si]×
Pr[Ki = k|Si]
Pr[Ki = k|Si]

= E [Yi(k)|Si] .
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Then returning to the Law of Iterated Expectations from above,

E

[
Yi
1{Ki = k}
πi(k;Si)

]
= E [E [Yi(k)|Si]] = E [Yi(k)] .

B.3 Theoretical properties of Control-augmented Thompson sam-

pling

The objective of our algorithm is to optimally allocate observations to treatment and control

conditions for estimating the average treatment effect with respect to the best treatment arm

and a pre-specified control condition. We note that there are tradeoffs: by using an adaptive

algorithm as discussed here, we prioritize assignment and estimation for the best arm, at the

expense of sub-optimal arms. When we use the control-augmented version of the adaptive

algorithm, we are further reducing some of the sample assigned to the best arm, and estimate

the best arm mean somewhat less precisely in favor of targeting the difference between the

best arm and the control.

We will consider the Horvitz-Thompson estimator, presented above. For simplicity we

assume here that batches are of size 1. Performance of adaptive algorithms with larger

batches is addressed in Jun et al. (2016) and Perchet et al. (2016).

The Horvitz-Thompson estimator of the ATE for arm k, τk (letting 0 signify the control

condition) is,

τ̂HTk =
1

N

N∑
i=1

Yi
1{Ki = k}
πi(k;Si)

− 1

N

N∑
i=1

Yi
1{Ki = 0}
πi(0;Si)

.

We require again independence of potential outcomes and treatment conditional on his-

tory, Yi(k) ⊥⊥ Ki|Si, which is given by the experimental design. Let us assume constant

means of the form Pr[Y (k) = 1] for all arms with the associated Bernoulli variances. If

we knew which treatment arm was best and the arms’ means ex-ante, we would simply fix
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probabilities at the start of the experiment to minimize variance. However, if this is not the

case, we must conduct some amount of exploration to also learn which arm is best.

For the adaptive experiment, the probabilities πi(k;Si) are functions of the random vari-

able Si. Conditional on history, the variance can be expressed as,

Var
[
τ̂HTk

∣∣∣Si] =

1

N2

N∑
i=1

Var

[
Yi(k)

1{Ki = k}
πi(k;Si)

∣∣∣∣∣Si
]

+
1

N2

N∑
i=1

Var

[
Yi(0)

1{Ki = 0}
πi(0;Si)

∣∣∣∣∣Si
]

Because we can treat the probabilities as fixed, conditional on history,

=
1

N2

N∑
i=1

Var [Yi(k)1{Ki = k}|Si]
Pr[Ki = k|Si]2

+
1

N2

N∑
i=1

Var [Yi(0)1{Ki = 0}|Si]
Pr[Ki = 0|Si]2

The Yi(k) and 1{Ki = k} terms are independent binomials, and the product of two binomials

is also a binomial, and so we express the variance of their product accordingly.

=
1

N2

N∑
i=1

Pr[Yi(k) = 1|Si] Pr[Ki = k|Si]×
(

1− Pr[Yi(k) = 1|Si] Pr[Ki = k|Si]
)

Pr[Ki = k|Si]2

+
1

N2

N∑
i=1

Pr[Yi(0) = 1|Si] Pr[Ki = 0|Si]×
(

1− Pr[Yi(0) = 1|Si] Pr[Ki = 0|Si]
)

Pr[Ki = 0|Si]2

Simplifying, we cancel terms and drop the conditioning on Si for the Yi

=
1

N2

N∑
i=1

Pr[Yi(k) = 1]×
(

1− Pr[Yi(k) = 1] Pr[Ki = k|Si]
)

Pr[Ki = k|Si]

+
1

N2

N∑
i=1

Pr[Yi(0) = 1]×
(

1− Pr[Yi(0) = 1] Pr[Ki = 0|Si]
)

Pr[Ki = 0|Si]
.
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To minimize this variance, we should like each of the πi(k
∗;Si) for the best arm k∗ and

πi(0;Si) terms to be proportional to the relative square root of the success rates.

Under the static design, as the size of the experiment grows, regardless of the probability

of being best that we associate with a given arm, we will never exploit that arm more than any

other, and will assign all arms with probability 1/(K + 1). Consequently, in the adaptive

design, if we are able to approach πi(k
∗;Si) and πi(0;Si) equal to 1/2, with appropriate

bounding, the asymptotic variance will be smaller than under the static case for K > 1.

Of course, performance in finite samples will depend on the rate at which we approach

these assignment probabilities, which will be a function of both the number of arms and the

distribution of outcomes under the various arms, here parameterized by the mean. We may

also wish to impose probability floors (similar to Dimakopoulou et al. 2017; Zhang et al.

2020) to avoid extreme weights. As we see in simulations in SI D.2, the performance of the

control-augmented algorithm relative to the static algorithm in finite samples will be better

when the difference between the best arm mean and the second best arm mean is larger.

To provide some understanding for the rate at which we will approach optimal assignment,

we refer to Agrawal and Goyal (2017)’s regret bounds for standard online Thompson sampling

with Beta priors, where expected total regret is the difference in total expected rewards under

optimal assignment as compared to assignment under a given algorithm. Optimal regret is

zero. They show regret as a function of the expected sum of assignments to suboptimal arms,

multiplied by the difference between the best arm mean and the mean under ams k 6= k∗.

For our objectives, we should like to see the component that is expected sum of assignments

to suboptimal arms to grow more slowly than N. Extrapolating from the proof of Theorem

1.2, we can see the expected sum of all plays of suboptimal arms under Thompson sampling

is O(ln(N)), as compared to under a random design, where it is O(N).

Finally, we have used Thompson sampling throughout for its heuristic interpretation and

well-studied performance. However, our control-augmented approach could be paired with
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many other adaptive algorithms for best arm selection. Indeed, since Thompson sampling is

designed to minimize regret and not speed best arm identification, it may not approach the

optimal arm assignment at the fastest rate. Russo (2016) proposes alternative algorithms

which will be optimal in this goal with appropriate parameter tuning.
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C Worked Examples

C.1 Beta distribution as conjugate prior to the Binomial distri-

bution

For a review of Bayesian inference, see Wasserman (2013, chapter 11). The below case is

given as example 11.1 in the text. Consider a random variable X, which follows a Bernoulli

distribution parameterized by an unknown Θ. We propose a uniform prior over the possible

values of Θ, i.e., the parameter is distributed Beta(1, 1), with density

fΘ(θ) = 1, 0 ≤ θ ≤ 1.

Our data consists of n i.i.d. observations, X{n} = (X1, . . . Xn). Using Bayes rule, the

distribution of the parameter Θ given the data X{n} is,

fΘ|X{n}(θ|x{n}) =
fX{n}|Θ(x{n}|θ)fΘ(θ)∫
fX{n}|Θ(x{n}|θ)fΘ(θ)dθ

.

Plugging in the total likelihood and the prior,

fΘ|X{n}(θ|x{n}) ∝ θ(
∑n

i=1 xi)(1− θ)(n−
∑n

i=1 xi), 0 < θ < 1.

The posterior follows a Beta distribution, with parameter values α =
∑n

i=1 xi + 1, and

β = n −
∑n

i=1 xi + 1. That is, the α parameter is the number of observed successes plus 1,

and the β parameter is the number of observed failures plus 1.
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C.2 Naive estimation under Thompson sampling

As an example, consider an experiment where we are comparing two treatment arms, with

success rate Θ1 and Θ2. The true, but unknown values of these parameters are both 0.5.

Again we set the prior for both arms as uniform over the parameter space, i.e., Beta(1, 1).

We require one observation from each arm in the first period. We then assign treatment to

one observation each subsequent period, with assignment probabilities proportional to the

probability that each arm is best, updating after each period.

Let nk,t be the number of trials observed for arm k up to and including period t, and

let X
{nk,t}
k = (X[1]k, . . . , X[nk,t]k) be the vector of responses under treatment arm k observed

up until and including time t. Thus at time t, posteriors follow Beta distributions with

parameters αk,t =
∑nk,t

i=1 x[i]k + 1 and βk,t = nk,t −
∑nk,t

i=1 x[i]k + 1.

Suppose that in the first period, we observe one success from arm one and one failure

from arm two. The posterior for Θ1 is now Beta(2, 1), while the posterior for Θ2 is Beta(1, 2).

Based on these posteriors, we calculate the probability that each arm is best.

P (Θ1 ≥ Θ2|X
{n1,t}
1 = x

{n1,t}
1 , X

{n2,t}
2 = x

{n2,t}
2 )

=

∫ 1

θ1=0

∫ θ1

θ2=0

f
Θ2|X

{n2,t}
2

(θ2|x
{n2,t}
2 )f

Θ1|X
{n1,t}
1

(θ1|x
{n1,t}
1 )dθ2dθ1

=

∫ 1

θ1=0

c1,tθ1
α1,t−1(1− θ1)β1,t−1

∫ θ1

θ2=0

c2,tθ2
α1,t−1(1− θ2)β1,t−1dθ2dθ1

where ck,t represents the normalization constant for the Beta distribution,
Γ(αk,t + βk,t)

Γ(αk,t)Γ(βk,t)
.
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At time t = 1,

=
Γ(3)

Γ(2)Γ(1)

Γ(3)

Γ(1)Γ(2)

∫ 1

θ1=0

θ1
1(1− θ1)0

∫ θ1

θ2=0

θ2
0(1− θ2)1dθ2dθ1

= 4

∫ 1

θ1=0

θ1

(∫ θ1

θ2=0

(1− θ2)dθ2

)
dθ1

= 4

∫ 1

θ1=0

θ1

(
θ1 −

θ1
2

2

)
dθ1

=
5

6
.

That is, having seen one success from arm one and one failure from arm two, we find that

the probability that arm one is the best arm is 5/6, and the probability that arm two is the

best is 1/6.

In period two, we would assign arm one again with probability 5/6 and arm two with

probability 1/6. This preferential assignment probability conditional on observed success or

failure introduces a source of bias into estimation. To see this, consider all possible states

we could arrive at after two periods, represented in Table C.1. A state is defined by the

number of times we see each treatment and the number of successes we observe under each

treatment,

s = {n1,2, n2,2, |x
{n1,2}
1 |, |x{n2,2}

2 |}.

The sample mean for arm k after two periods is defined as,

θ̂k =

∑nk,2

i=1 x[i]k

nk,2
.

If we were to arrive at all states with equal probability, the sample means for each arm

would coincide with the true means in expectation. However, we do not see each state with

equal probability. If we take this into account, the sample mean we would observe for either
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Table C.1: Possible States after Two Periods

n1,2 n2,2 |x{n1,2}
1 | |x{n2,2}

2 | P (Θ1 ≥ Θ2| s) P (s)

2 1 2 1 0.60 0.063
2 1 1 1 0.30 0.083
1 2 1 1 0.70 0.083
1 2 1 2 0.40 0.063
2 1 2 0 0.90 0.104
2 1 1 0 0.70 0.167
1 2 1 0 0.90 0.021
2 1 0 1 0.10 0.021
1 2 0 2 0.10 0.104
1 2 0 1 0.30 0.167
2 1 0 0 0.40 0.063
1 2 0 0 0.60 0.063

arm is, in expectation, only 0.458.

E
[
θ̂k

]
=
∑
s

θ̂k|s · P (s)

≈ 0.458

If we condition on the best observed arm, however, the expected sample mean of the best

arm is 0.708, although the true parameter value for either arm is 0.5.

E
[
θ̂max

]
=
∑
s

θ̂max|s · P (s)

≈ 0.708

As we observe more outcomes under each arm, we would expect the sample mean to

regress to the true mean. However, the differing sampling probabilities imply that arms

that initially under-perform by chance will converge at a slower rate than those that initially

over-perform by chance.
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By using inverse probability weights, however, we are able to fully account for the different

sampling probabilities, and the IPW estimate for either arm is 0.5 in expectation.
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C.3 Control-augmented batch-wise Thompson sampling

Consider an experiment where we are comparing two treatment arms, with success rates

ΘT1 and ΘT2, and a control arm, with success rate ΘC . The true, but unknown values of

treatment parameters are 0.75 and 0.5 respectively, and the control parameter value is 0.25.

Again we set the prior for all arms as uniform over the parameter space, i.e., Beta(1, 1).

We will consider a batched design, with nine observations per period. In the first period,

we require three observations from each arm. We then assign treatment according to control-

augmented Thompson sampling in the two following periods.

Suppose in the first period we observe three successes for arm T1, one success and two

failures for arm T2, and three failures for arm C. The posteriors are then Beta(4, 1) for ΘT1,

Beta(2, 3) for ΘT2, and Beta(1, 4) for ΘC .

We then calculate the posterior probability that arm T1 is the best treatment arm as,

P (ΘT1 ≥ ΘT2|X{3}T1 = x
{3}
T1 , X

{3}
T2 = x

{3}
T2 )

=
Γ(5)

Γ(4)Γ(1)

Γ(5)

Γ(2)Γ(3)

∫ 1

θT1=0

θ3
T1

∫ θT1

θT2=0

θT2(1− θT2)2dθT2dθT1

= 0.929.

The posterior probability for T2 must then be 0.071.

The next step in our algorithm is to identify the treatment condition with the largest

posterior probability, which here, is clearly T1, and to find the difference in cumulative

sample between that arm and the control condition. As we have fixed our sample for this

first period, that difference is 0.

We then assign the control probability to be p̃C,2 = 1/3. For the treatment arms, the

probabilities are proportional to the posterior probabilities scaled so that all probabilities
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sum to 1:

p̃T1,2 = 0.929 ∗ 2

3
= 0.619,

p̃T2,2 = 0.071 ∗ 2

3
= 0.048.

Suppose that in period two based on the sampling probabilities (p̃T1,2, p̃T2,2, p̃2,C), from

our period size of nine, we assign six observations to arm T1, one to arm T2, and two to the

control. We observe three successes and three failures for T1, one success for T2, and one

success and one failure for the control.

The posterior probabilities for arms T1 and T2 are then 0.713 and 0.287 respectively.

(Note that we must take into account the cumulative successes and failures ). The treatment

condition with the largest posterior probability is still T1. However, we now have a difference

in the cumulative sample between the best arm and the control condition; we have assigned

a cumulative sample of nine to arm T1, and five to the control, for a difference of four.

The proportion of the next batch needed for the control to match the cumulative sample

of the best arm is 4/9 (below the probability cap of .9). So the control probability is 4/9

plus 1/3 of the remaining probability,

p̃C,3 =
4

9
+

1

3
∗ 5

9
= 0.630,

For the treatment conditions, the probabilities are proportional to the posterior probabilities,

scaled so that all probabilities sum to 1:

p̃T1,3 = 0.713 ∗ 2

3
∗ 5

9
= 0.264

p̃T2,3 = 0.287 ∗ 2

3
∗ 5

9
= 0.106.
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We would then use these sampling probabilities in the third and final period.
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D Additional Simulations

D.1 Varying number of batches

We replicate simulations presented in Table 1 with 1,000 total observations and varying

number of batches. Most of the gains are realized by five total batches, with diminishing

marginal returns thereafter.

In practice, the frequency of updating and batch size will depend on the experimental

setting. For online survey experiments, it may be more convenient to update each day, and

batch size will relate to response rates on a given platform. In clinical trials or field exper-

iments, the time between intervention and outcome measurement may be longer, requiring

larger batches and fewer updates when the duration of the entire experiment is limited.

When there is flexibility around the frequency of updating and batch size, the researcher

may consider tradeoffs in costs to decreasing batch size with improvements in algorithm

performance (Perchet et al. 2016; Gao et al. 2019).
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Figure D.1: Iterated Simulation Statistics, Varying Number of Batches, Arm selection and
coverage
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Figure D.2: Iterated Simulation Statistics, Varying Number of Batches, RMSE
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Table D.2: Iterated Simulation Statistics, Varying Number of Batches

Design RMSE Coverage

Assignment algorithm Case Batches
Best arm
selected

Best arm ATE Best arm ATE

1: Clear winner 1 0.909 0.031 0.038 0.941 0.949
TS 2 0.945 0.025 0.056 0.952 0.846

4 0.962 0.022 0.060 0.955 0.769
5 0.963 0.022 0.060 0.956 0.775
8 0.965 0.022 0.058 0.955 0.785
10 0.968 0.021 0.057 0.958 0.795
20 0.967 0.021 0.056 0.956 0.799
50 0.970 0.020 0.054 0.960 0.805
100 0.969 0.020 0.054 0.961 0.807

2: No clear winner 1 0.180 0.024 0.033 0.935 0.947
2 0.177 0.036 0.054 0.819 0.802
4 0.183 0.036 0.055 0.862 0.829
5 0.181 0.036 0.054 0.872 0.838
8 0.194 0.034 0.050 0.884 0.850
10 0.193 0.033 0.050 0.880 0.851
20 0.186 0.032 0.047 0.890 0.861
50 0.188 0.031 0.045 0.894 0.863
100 0.190 0.031 0.045 0.895 0.866

3: Competing second best 1 0.635 0.031 0.038 0.940 0.945
2 0.676 0.027 0.060 0.946 0.846
4 0.696 0.026 0.066 0.950 0.759
5 0.699 0.026 0.065 0.948 0.760
8 0.700 0.026 0.062 0.952 0.783
10 0.715 0.025 0.061 0.956 0.796
20 0.708 0.025 0.059 0.956 0.796
50 0.710 0.024 0.058 0.955 0.803
100 0.704 0.023 0.058 0.958 0.799

TS, 1: Clear winner 2 0.939 0.025 0.034 0.948 0.945
Control-Augmented 4 0.949 0.024 0.031 0.954 0.952

5 0.955 0.024 0.030 0.955 0.949
8 0.955 0.023 0.030 0.956 0.952
10 0.956 0.023 0.029 0.957 0.952
20 0.960 0.023 0.029 0.962 0.954
50 0.958 0.023 0.029 0.962 0.956
100 0.957 0.024 0.030 0.957 0.953

2: No clear winner 2 0.159 0.036 0.043 0.821 0.868
4 0.165 0.037 0.043 0.857 0.868
5 0.176 0.036 0.043 0.867 0.879
8 0.175 0.035 0.041 0.878 0.887
10 0.174 0.034 0.041 0.879 0.886
20 0.174 0.034 0.040 0.881 0.885
50 0.180 0.033 0.040 0.886 0.890
100 0.178 0.034 0.040 0.885 0.892

3: Competing second best 2 0.665 0.027 0.036 0.944 0.942
4 0.673 0.029 0.036 0.943 0.937
5 0.685 0.029 0.035 0.942 0.932
8 0.682 0.029 0.035 0.943 0.938
10 0.683 0.029 0.035 0.946 0.937
20 0.676 0.029 0.034 0.943 0.938
50 0.680 0.029 0.034 0.946 0.941
100 0.670 0.031 0.036 0.941 0.936

Note: Assignment algorithms are batch-wise Thompson sampling (TS) and control-augmented batch-wise Thompson sampling
(TS, Control-Augmented); the balanced static design is equivalent to the single-batch design. “Best arm selected” column
presents the portion of simulations under which the true best arm was selected. RMSE is average root mean squared error of
the estimate of the mean of the true best arm, and the average treatment effect of the true best arm relative to the control.
Coverage is with respect to 95% confidence intervals of the estimate. In all cases one of the inferior arms with a true success
rate of 0.10 is selected as the control comparison for estimating the Average Treatment Effect.
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D.2 Varying value of best arm

We additionally replicate the simulations with 1,000 total observations, 100 observations per

batch, varying value of the best arm, holding fixed the value of eight other arms at 0.10.
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Figure D.3: Iterated Simulation Statistics, Varying Value of Best Arm
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Table D.3: Iterated Simulation Statistics, Varying Value of Best Arm

Design RMSE Coverage

Assignment algorithm
Best arm

value
Best arm
selected

Best arm ATE Best arm ATE

TS 0.10 0.113 0.035 0.050 0.867 0.848
0.11 0.193 0.033 0.050 0.880 0.851
0.12 0.289 0.031 0.048 0.911 0.867
0.13 0.415 0.030 0.048 0.923 0.860
0.14 0.534 0.028 0.049 0.934 0.856
0.15 0.665 0.026 0.049 0.945 0.855
0.16 0.779 0.026 0.049 0.945 0.842
0.17 0.848 0.024 0.051 0.952 0.833
0.18 0.905 0.023 0.053 0.954 0.824
0.19 0.946 0.022 0.055 0.960 0.807
0.20 0.968 0.021 0.057 0.958 0.795

Static 0.10 0.118 0.023 0.032 0.936 0.952
0.11 0.180 0.024 0.033 0.935 0.947
0.12 0.266 0.025 0.034 0.929 0.945
0.13 0.363 0.026 0.034 0.936 0.948
0.14 0.471 0.026 0.035 0.938 0.949
0.15 0.575 0.027 0.035 0.937 0.946
0.16 0.666 0.028 0.036 0.944 0.953
0.17 0.750 0.028 0.037 0.947 0.950
0.18 0.826 0.029 0.037 0.944 0.951
0.19 0.870 0.030 0.038 0.939 0.948
0.20 0.909 0.031 0.038 0.941 0.949

TS, 0.10 0.106 0.037 0.043 0.843 0.854
Control-Augmented 0.11 0.174 0.034 0.041 0.879 0.886

0.12 0.275 0.033 0.040 0.897 0.900
0.13 0.375 0.032 0.038 0.910 0.907
0.14 0.502 0.030 0.037 0.929 0.921
0.15 0.636 0.028 0.035 0.940 0.936
0.16 0.728 0.027 0.033 0.944 0.942
0.17 0.820 0.026 0.033 0.947 0.943
0.18 0.877 0.025 0.032 0.949 0.943
0.19 0.923 0.024 0.030 0.956 0.949
0.20 0.956 0.023 0.029 0.957 0.952

Note: Assignment algorithms are batch-wise Thompson sampling (TS), balanced static design (Static), and control-augmented
batch-wise Thompson sampling (TS, Control-Augmented). “Best arm selected” column presents the portion of simulations
under which the true best arm was selected. RMSE is average root mean squared error of the estimate of the mean of the
true best arm, and the average treatment effect of the true best arm relative to the control. Coverage is with respect to 95%
confidence intervals of the estimate. In all cases one of the inferior arms with a true success rate of 0.10 is selected as the control
comparison for estimating the Average Treatment Effect.
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D.3 Varying first batch size

One practical question that often arises in adaptive designs is how much sample to allocate

to the first batch, prior to the start of adaptation. We conducted a series of simulations

with 1,000 total observations, varying the size of the first batch, fixing the total number of

batches at 10.

We note that for RMSE of the best arm and for best arm selection, there may be an

initial benefit to increasing batch size in the cases where there is an identifiable best arm;

increasing the first batch size may reduce chance under-assignment to the true best arm in

early periods. That is, by extending the first period of exploration, we avoid exploiting the

wrong arms. After this initial benefit, however, enforcing more exploration in the first period

comes at the cost of exploiting the true best arm.

The point at which we see decreasing returns depends on the parameter values of the

different arms. When there is no clear winner, however, we may generally be better off with

larger first batch sizes, all the way up to a static design—where the first batch size is the full

experiment, as the adaptive algorithms do not sufficiently exploit the best arm. We do not

see returns to exploitation in cases where we are not able to able to identify the best arm to

exploit.

Finally, when it comes to RMSE of the ATE with respect to the best arm, for the control-

augmented algorithm, we see the same trends as for the best-arm estimate. Regarding

standard Thompson sampling, however, increasing first batch size improves RMSE for the

ATE, as we are forcing a larger sample to be collected for the control arm.
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Figure D.4: Iterated Simulation Statistics, Varying Size of First Batch, Arm Selection and
Coverage
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Figure D.5: Iterated Simulation Statistics, Varying Size of First Batch, RMSE
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Table D.4: Iterated Simulation Statistics, Varying First Batch Size: Thompson Sampling

Design RMSE Coverage

Assignment algorithm Case
First batch

size
Best arm
selected

Best arm ATE Best arm ATE

1: Clear winner 100 0.968 0.021 0.057 0.958 0.795
TS 190 0.965 0.021 0.058 0.958 0.760

280 0.971 0.021 0.059 0.964 0.747
370 0.969 0.022 0.059 0.958 0.755
460 0.967 0.023 0.058 0.958 0.807
550 0.971 0.024 0.055 0.960 0.866
640 0.966 0.025 0.052 0.954 0.906
730 0.961 0.027 0.048 0.953 0.923
820 0.954 0.028 0.045 0.948 0.939
910 0.938 0.029 0.042 0.945 0.943

2: No clear winner 100 0.193 0.033 0.050 0.880 0.851
190 0.200 0.033 0.050 0.881 0.835
280 0.189 0.033 0.049 0.873 0.834
370 0.188 0.032 0.049 0.865 0.819
460 0.186 0.032 0.048 0.858 0.829
550 0.185 0.031 0.046 0.848 0.827
640 0.188 0.030 0.045 0.837 0.852
730 0.184 0.029 0.043 0.862 0.875
820 0.188 0.028 0.040 0.876 0.898
910 0.185 0.026 0.037 0.911 0.926

3: Competing second best 100 0.715 0.025 0.061 0.956 0.796
190 0.710 0.024 0.063 0.955 0.763
280 0.702 0.024 0.064 0.953 0.746
370 0.706 0.025 0.064 0.956 0.761
460 0.690 0.025 0.062 0.953 0.817
550 0.693 0.026 0.058 0.953 0.874
640 0.680 0.027 0.054 0.953 0.909
730 0.677 0.027 0.050 0.953 0.930
820 0.668 0.028 0.045 0.946 0.937
910 0.661 0.029 0.041 0.950 0.946
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Table D.5: Iterated Simulation Statistics, Varying First Batch Size, Control Augmented

Design RMSE Coverage

Assignment algorithm Case
First batch

size
Best arm
selected

Best arm ATE Best arm ATE

TS, 1: Clear winner 100 0.956 0.023 0.029 0.957 0.952
Control-Augmented 190 0.957 0.023 0.029 0.955 0.951

280 0.955 0.023 0.029 0.959 0.952
370 0.957 0.024 0.030 0.959 0.955
460 0.959 0.024 0.030 0.961 0.959
550 0.959 0.025 0.032 0.960 0.953
640 0.951 0.027 0.033 0.953 0.955
730 0.948 0.027 0.034 0.954 0.954
820 0.941 0.029 0.036 0.947 0.947
910 0.924 0.030 0.037 0.944 0.949

2: No clear winner 100 0.174 0.034 0.041 0.879 0.886
190 0.173 0.035 0.041 0.870 0.877
280 0.172 0.035 0.041 0.860 0.866
370 0.176 0.034 0.041 0.854 0.866
460 0.178 0.034 0.040 0.840 0.862
550 0.176 0.033 0.040 0.829 0.877
640 0.176 0.032 0.039 0.835 0.893
730 0.181 0.031 0.038 0.846 0.907
820 0.171 0.029 0.037 0.879 0.922
910 0.186 0.027 0.035 0.914 0.939

3: Competing second best 100 0.683 0.029 0.035 0.946 0.937
190 0.678 0.028 0.034 0.943 0.935
280 0.685 0.027 0.034 0.949 0.938
370 0.677 0.027 0.033 0.949 0.946
460 0.684 0.027 0.034 0.949 0.944
550 0.664 0.027 0.034 0.947 0.941
640 0.665 0.028 0.035 0.944 0.942
730 0.666 0.029 0.036 0.943 0.944
820 0.646 0.030 0.037 0.939 0.945
910 0.652 0.030 0.037 0.940 0.948

Note: Assignment algorithms are batch-wise Thompson sampling (TS) and control-augmented batch-wise Thompson sampling
(TS, Control-Augmented). “Best arm selected” column presents the portion of simulations under which the true best arm was
selected. RMSE is average root mean squared error of the estimate of the mean of the true best arm, and the average treatment
effect of the true best arm relative to the control. Coverage is with respect to 95% confidence intervals of the estimate. In all
cases one of the inferior arms with a true success rate of 0.10 is selected as the control comparison for estimating the Average
Treatment Effect.
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E Additional Information, Study One

Table E.6: Minimum Wage Rates as of June, 2018

State Minimum wage

Alabama $7.25
Alaska $9.84
Arizona $10.50
Arkansas $8.50
California $11.00
Colorado $10.20
Connecticut $10.10
Delaware $8.25
Florida $8.25
Georgia $7.25
Hawaii $10.10
Idaho $7.25
Illinois $8.25
Indiana $7.25
Iowa $7.25
Kansas $7.25
Kentucky $7.25
Louisiana $7.25
Maine $10.00
Maryland $9.25
Massachusetts $11.00
Michigan $9.25
Minnesota $9.65
Mississippi $7.25
Missouri $7.85
Montana $8.30
Nebraska $9.00
Nevada $8.25
New Hampshire $7.25
New Jersey $8.60
New Mexico $7.50
New York $10.40
North Carolina $7.25
North Dakota $7.25
Ohio $8.30
Oklahoma $7.25
Oregon $10.25
Pennsylvania $7.25
Rhode Island $10.10
South Carolina $7.25
South Dakota $8.85
Tennessee $7.25
Texas $7.25
Utah $7.25
Vermont $10.50
Virginia $7.25
Washington $11.50
West Virginia $8.75
Wisconsin $7.25
Wyoming $7.25

Source: https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
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F Additional Analyses, Study Two

F.1 Response rates

We consider response rates by party and treatment condition in Figure F.6. Control means

are 0.956 and 0.977 for Democrats and Republicans, respectively. For the Lottery, Direction,

and Accuracy conditions, response rates are very close to those under the control condition.

Response rates under the Google condition are about 5 percentage points lower for both

Democrats and Republicans; response rates under the Extra Time condition are 32 and 23

percentage points lower for Democrats and Republicans respectively.

Figure F.6: Study Two, Response Rates
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Note: ∗p<0.05. Estimates are with respect to rates of response in the control condition,
and are inverse-probability weighted. Standard errors are heteroskedasticity consistent HC2
corrected.
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F.2 Analysis for Independents

Figure F.7: Study Two, Mean Correct Responses, Independents

●

●

●

●

●

●

●

●

●

●

IPW−Adjusted

IPW

0.036 (0.031)

0.040 (0.033)

−0.168 (0.116)

−0.211 (0.122)

−0.132 (0.141)

−0.065 (0.161)

−0.004 (0.076)

−0.054 (0.083)

−0.003 (0.040)

−0.006 (0.038)

Accuracy

Direction

Extra Time

Google

Lottery

−0.4 −0.2 0.0 0.2 0.4

Note: ∗p<0.05. Estimates are inverse probability weighted. Standard errors are bias-reduced
linearization CR2 adjusted, clustered at the subject level.
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F.3 Comparison with alternative design

Figure F.8: Study Two, Mean Correct Responses, Simulated Comparisons
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Note: ∗p<0.05. “IPW” estimates are produced from the original study and are inverse
probability weighted. Standard errors for these estimates are bias-reduced linearization CR2
adjusted, clustered at the subject level. “Static” estimates are produced by sampling with
replacement from observed responses, with sampling weights as the inverse probability of
treatment weights, to produce a hypothetical static trial of the same size as the adaptive
trial. These estimates are bootstrapped 1,000 times, and confidence intervals are produced
under the assumption that bootstrap replicates follow a t-distribution.
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F.4 Downstream analyses

We asked two additional follow-up questions later in the survey, to evaluate downstream

effects on current evaluations of and optimism about the economy. These questions are:

Follow-up 1: “What do you think about the state of the economy these days in the

United States?”

Response options are “Very good,” “Good,” “Neither good nor bad,” “Bad,” and

“Very bad.” Outcomes are coded as 1 if the response is “Very good” or “Good,” and

0 otherwise, with NAs left as is.

Follow-up 2: “What about the next 12 months? Do you expect the economy, in the

country as a whole, to. . . ”

Response options are “Get better,” “Stay about the same,” and “Get worse.” Out-

comes are coded as 1 if the response is “Get better,” and 0 otherwise, with NAs left

as is.

We exclude from this analysis those treated with Google and Extra Time conditions,

as the response rates under these two treatments are much lower than the others (see Fig-

ure F.6). We include all models with and without covariate adjustment.
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Table F.7: Study Two, Downstream Effects of Treatment

Dependent variable:

Follow-up 1 Follow-up 2
Democrats Republicans Democrats Republicans

(1) (2) (3) (4) (5) (6) (7) (8)

Lottery −0.005 −0.002 −0.005 0.003 0.019 0.047 0.018 0.015
(0.044) (0.043) (0.030) (0.029) (0.032) (0.031) (0.034) (0.034)

Accuracy −0.008 −0.013 −0.067 −0.066 0.021 0.043 −0.181 −0.174
(0.042) (0.041) (0.093) (0.079) (0.032) (0.032) (0.101) (0.094)

Direction −0.034 −0.044 0.058 0.055 0.022 0.049 −0.112 −0.123
(0.047) (0.046) (0.059) (0.064) (0.038) (0.037) (0.106) (0.090)

Covariate adjusted No Yes No Yes No Yes No Yes
Observations 1,143 1,143 1,124 1,124 1,143 1,143 1,120 1,120
R2 0.001 0.072 0.009 0.174 0.001 0.100 0.025 0.172

Note: ∗p<0.05. Estimates are inverse probability weighted. Standard errors are het-
eroskedasticity consistent HC2 corrected.
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G Study Three: An Adaptive Conjoint Trial

We consider an additional setting where arms are composed of factorial components as in a

conjoint experiment, where multiple dimensions of treatments are varied. Combinations of

factors can quickly result in a large number of arms that may be unwieldy for exploration.

In the case of binary rewards, the reward distribution can be modeled by a probit regression

on the respective factorial components (see, e.g., Shahriari et al. 2016; for more general

cases, see Filippi et al. 2010). Modeling assumptions, such as the stipulation that the factors

exert main effects without cross-factor interactions, allow us to pool information across arms

sharing common components and to estimate success probabilities for arms which we have

not observed. Such model-based approaches can be used to select from among a large number

of possible treatment profiles.

Here, we consider ballot measures composed of four elements, each addressing an aspect

of campaign finance: personal limits, corporate limits, public funding, and disclosures for

individual campaign contributions. Each element may take on one of several levels, such that

the combination of factors with 4× 3× 4× 4 levels results in 192 unique experimental arms.

As with the minimum wage and right-to-work measures, the outcome is defined as a success

if a subject responds that they would vote in favor of the measure. We are interested in

identifying the experimental arm representing the combination of factors that is associated

with the highest success rate.

The parameters of interest are a vector γ, which we estimate as the coefficients in our

model,

P (x = 1) = Φ

ω0 +
4∑
j=1

Lj∑
`=1

γj`Dj`

 ,

where Φ represents the standard normal cumulative distribution function, and the parameter
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vector γ = (ω0, γ1,1, . . . , γ4,3) includes an intercept and coefficients for dummy variables, Dj`,

indexed over the four factors, j, and the levels within each factor, `. We assume a uniform

prior over the parameter vector.3 Alternative approaches to modeling could account for

interactions through regularization.

For this study, we recruited a convenience sample of 979 subjects from Lucid, collected

as a target of 100 responses for each of 10 waves. Our study ran from November 26, 2018 to

December 7, 2018. We paid $1 for each survey response; participants were compensated in

money, points, or other rewards depending on how they were enrolled in the Lucid subject

pool. Due to constraints in survey implementation at the time of the experiment, we were

not able to prevent Lucid subjects from taking the survey on multiple days, but we were able

to identify them and remove them from ex-post analysis for each wave. While we include 10

unique waves in our design and analysis, data collection for some waves was extended to a

second day to facilitate identification of re-sampled subjects and to augment the sample to

account for these subjects.

We separately ran a conjoint experiment with the same features using a static design,

in which all factor levels were presented with equal probability. For this experiment, we

recruited a population from MTurk from November 4 to 12, 2018. As the MTurk population

was recruited as part of a larger multi-wave study, we randomly select a subsample of 979

subjects for comparison to the adaptive design. MTurk subjects were also paid $1 for their

participation.

3The prior is an improper prior and can not be integrated, as it is uniform over all real

numbers. However, this does not cause problems when sampling from the posterior, which

is well-defined.
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Design

Both the static and adaptive experiments follow a conjoint design with four sets of attributes.

The full text of all treatment levels is presented in Table G.8, where the first level of each

attribute represents the status quo at the time of the experiment. Subjects were shown

two measures, with assignment conducted independently. (Bansak et al. 2018 demonstrate

that conjoint designs are robust to assigning subjects multiple choice tasks.) The outcome

measure is response to the question, “If you were casting a ballot tomorrow, would you

vote yes or no on this constitutional amendment?” with response categories “Yes,” “No,”

and “Undecided.” Our primary outcome of interest is binary: an indicator for whether the

response was “Yes.”

In the first period, we assign treatment to a subset of conditions to facilitate estimation

of main effects. Following the first wave of data collection, we then update this prior by

modeling success rate for each of the conditions using probit regression with a main effects

only model.

We simulate 10,000 draws from the posterior distribution, and compute the predicted

success probability in each of the 192 treatment conditions for each draw, and then calculate

the probability that each condition is “best” as the proportion of draws under which the arm

had the highest predicted success rate. On the subsequent wave, sampling of each condition

is conducted in proportion to this probability.

Results

The benefits of the adaptive design become evident when considering the development of

probabilities of being best over time. For each attribute, we may consider probabilities of

being best for each level marginalizing over the other attributes, as we have assumed a main-

effects only model. Under this assumption, the adaptive conjoint design effectively reduces
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Table G.8: Study Three, Treatments and Outcome Measures

Personal Limits Corporate Limits Public Funding Disclosures

Question Text Consider an amendment to the Constitution of the United States on the topic of campaign finance. This
amendment includes the following provisions: [ballot measure text]. If you were casting a ballot tomorrow,
would you vote yes or no on this constitutional amendment? [Yes; No; Undecided]

Level 1 [Status quo] maintain no limits on how
much an individual may
contribute in aggregate to
all candidates in a
calendar year

maintain the prohibition
on corporate contributions
to candidates, while
allowing contributions to
political action
committees and
independent expenditures

maintain the public
funding option for
presidential elections, and
introduce no new reforms
for public funding for
other federal office

maintain requirements for
disclosures for
contributions above the
current federal limit, $200
per election cycle

Level 2 set the limit on how much
an individual may
contribute in aggregate to
all candidates at $1
million per calendar year

prohibit corporations from
providing financial
support to candidates for
office, either through
direct contributions to
candidates, contributions
to political action
committees, or
independent expenditures

prohibit Congress from
passing a bill to establish
public funding of
candidates

eliminate all disclosure
requirements

Level 3 set the limit on how much
an individual may
contribute in aggregate to
all candidates at $100,000
per calendar year

allow corporations to
provide financial support
to candidates for office,
either through direct
contributions to
candidates, contributions
to political action
committees, or
independent expenditures

make available public
funds for candidates for
federal office decided by a
November general election;
funds would be provided
at a rate of $1 in matching
funds for every $1 raised
through small (under
$175) donations from
constituents, in exchange
for the candidate agreeing
to campaign spending
limits and increased
financial oversight

require that every
campaign contribution be
disclosed, no matter how
small

Level 4 set the limit on how much
an individual may
contribute in aggregate to
all candidates at $10,000
per calendar year

make available public
funds for candidates for
federal office decided by a
November general election;
funds would be provided
at a rate of $5 in matching
funds for every $1 raised
through small (under
$175) donations from
constituents, in exchange
for the candidate agreeing
to campaign spending
limits and increased
financial oversight

require disclosures for
contributions above $500
per election cycle
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Figure G.9: Study Three, Overtime Posterior Probabilities by Attribute
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Figure G.10: Study Three, Overtime Posterior Probabilities, Joint
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to four separate adaptive experiments, each running over the course of the study. Consider-

ing the left panel in Figure G.9, for the adaptive design a clear winner has emerged in the

corporate limits, public funding, and disclosures attributes, and a likely winner has emerged

for personal limits. From these, we would gather that the most preferred measure profile

would propose personal contribution limits of only $10,000, would prohibit all corporate

contributions as well as public funding, and would institute required disclosures of all con-

tributions. Considering the right panel in Figure G.9, we would infer under the static design

that the most preferred profile measure would also propose personal contribution limits of

only $10,000 and would prohibit all corporate contributions, but would support $1 to $1 in

matching funds, and would require disclosures above $500.

Figure G.10 presents the probability of being best for each condition as the joint proba-

bilities of the component attribute levels. For the adaptive design, the most preferred profile

includes each of the top attribute levels presented in the left panel of Figure G.9, with a final

probability of being best of 0.338; the second-most preferred profile would include the same

levels of the other attributes, but upping personal contribution limits to $100,000, with a

final probability of being best of 0.213; the third-most preferred profile would similarly con-

tain the same levels of the other attributes, but set personal contribution limits at $1 million,

with a final probability of being best of 0.076. For the static design, the most preferred pro-

file includes each of the top attribute levels presented in the right panel of Figure G.9, with

a final probability of being best of 0.194; the second-most preferred profile would include

the same levels of the other attributes, but requiring disclosures of all contributions, with

a final probability of being best of 0.161; the third-most preferred profile would similarly

contain the same levels for personal and corporate contributions, but would prohibit public

funding and would require disclosures for contributions over $500, with a final probability of

being best of 0.140. Both the adaptive and static designs offer a similar characterization of

public preferences regarding campaign finance, but the adaptive design offers a more precise

45



reading of the public’s most preferred policies.

Substantively, what does the adaptive trial tell us about the structure of public prefer-

ences regarding campaign finance regulation? First, the constitutional amendment that most

appeals to our adaptive sample is at odds with Supreme Court rulings. The Court in Mc-

Cutcheon v. Federal Election Commission, 572 U.S. 185 (2014) struck down aggregate limits

on how much individuals can donate to campaigns during an election cycle; by contrast, to

our sample, the lower the personal limit, the better. Public preferences are also at odds with

the current policy with respect to corporate contributions. Our sample would prohibit all

corporate contributions, preferring an outright ban to a system that permits PAC contri-

butions and, under Citizens United v. Federal Election Commission, 558 U.S. 310 (2010),

allows unlimited electioneering communications but not direct contributions to parties or

candidates. Second, our sample is also out of step with current federal law, which requires

disclosures of contributions greater than $200. Our sample most prefers a system in which

all contributions are disclosed. Finally, although our sample takes a “reformist” stance on

contribution limits and disclosure, it remains reluctant to replace private contributions with

public subsidies; its most preferred policy is one that prohibits public funding altogether.

Overall, public opinion in the United States favors public policies often seen outside the U.S.

whereby contributions are tightly restricted and public subsidies are minimal.
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