
Active Maintenance:

A Proposal for the Long-term Computational Reproducibility of

Scientific Results

Limor Peer∗ Lilla Orr† Alexander Coppock†

August 26, 2020

Abstract

Computational reproducibility, or the ability to reproduce analytic results of a scientific
study on the basis of publicly available code and data, is a shared goal of many researchers,
journals, and scientific communities. Researchers in many disciplines including political science
have made strides towards realizing that goal. A new challenge, however, has arisen. Code
too often becomes obsolete within just a few years. We document this problem with a random
sample of studies posted to the ISPS Data Archive; we encountered nontrivial errors in seven of
20 studies. In line with similar proposals for the long-term maintenance of data and commercial
software, we propose that researchers dedicated to computational reproducibility should have a
plan in place for “active maintenance” of their analysis code. We offer concrete suggestions for
how data archives, journals, and research communities could encourage and reward the active
maintenance of scientific code and data.

∗Yale University Institution for Social and Policy Studies
†Yale University Department of Political Science
‡We thank Jamie Druckman and Ann Green for helpful feedback on earlier drafts and Yuntian Xia and Brian

Shih for excellent research assistance.

1



Introduction

A study is computationally reproducible if a sufficiently savvy third party could download the

code and data from a public repository and successfully execute the analysis with minimal

difficulty. Initiatives like DA-RT in political science (Lupia and Elman, 2014) reflect a growing

consensus that at least for research that relies on the statistical analysis of quantitative data

which can be safely shared, computational reproducibility is a shared goal.

As argued in a National Academies of Sciences, Engineering, and Medicine report “the

scientific enterprise depends on the ability of the scientific community to scrutinize scientific

claims” (National Academies of Sciences Engineering and Medicine, 2019, p. 6). Evaluating

published scientific claims can be difficult because readers must infer from written descriptions

of statistical procedures what the authors have actually done. Even when those descriptions

are accurate, they are necessarily an approximation of what occurred. The move toward

computational reproducibility as a precondition of publication has been successful in revealing

analytical errors and ensuring that shared materials are given persistent links (Gertler and

Bullock, 2017).

We consider what happens after materials have been deposited at public archives. A study

that was computationally reproducible on the day of deposit has already cleared a high bar. In

addition to rigorous scrutiny of the manuscript, the code and data, or “replication archives,”

were demonstrated by a trusted party to reproduce the numerical results reported in the paper.

However, computational reproducibility is dynamic and can be elusive. Code that successfully

executes on the day of deposit may break a year, a decade, or a generation later. Operating

systems change and software packages are updated or not maintained at all. Data used for

analysis may become unintelligible if the software used to create the data cannot be run.

Workflows that depend on particular online resources may fail if the resources are moved or

taken down.

In this paper, we propose “active maintenance” as a solution to this problem. In short, we

suggest that replication archives should be periodically inspected to ensure that they run on

contemporary computing environments according to a maintenance plan. Active maintenance

builds on common practices in the data preservation (Conway, 2000) and code development

communities (Fowler and Foemmel, 2006). Both recognize that supporting materials is an

ongoing effort that requires resources, infrastructure, and standards.

Whether active maintenance is appropriate in a given case depends on the relative costs

and benefits. The benefits of active maintenance are data and code that continue to provide

2



scholars with tools to understand, critique, and reuse existing scientific knowledge. The costs to

active maintenance are non-negligible. Debugging old code takes time and expertise. Whether

the benefits exceed the costs may ultimately depend on the value of the scientific knowledge

contained in the replication archive and on the difficulty of the required maintenance. We argue

that studies deemed as important justify an investment in long-term reproducibility and that the

decision to invest in active maintenance ought to be supported by policy. Archives, publishers,

scholarly communities, funders, universities, or other stakeholders taking responsibility for the

digital materials should make explicit at the time of deposit whether and how they engage in

active maintenance.

Motivating example: “Shy Trump Voters”

We begin with a case study that illustrates overtime degradation in computational reproducibility

and how active maintenance could address it. Coppock (2017) reports the results of a study that

attempts to discern whether some portion of the polling misses in the 2016 U.S. Presidential

election could be attributed to survey respondents who misreport their support for Donald

Trump for fear of being perceived as racist or sexist.

The ISPS Data Archive reviewed the replication materials for Coppock (2017) in July of 2017

as part of its routine process (Peer and Green, 2012). During the initial review process, archive

staff confirmed that all files necessary to replicate the reported results were available. These

included anonymized and documented survey data, and program files necessary to analyze the

data. The analysis consisted primarily of descriptive summaries and a comparison of direct and

list experimental estimates with bootstrapped standard errors. Archive staff suggested a few

revisions which the author implemented. These materials were archived on May 1, 2018.

In October of 2019, ISPS archive staff revisited these materials as part of a training exercise.

Newly hired staff members encountered an error which prevented the code from running in

full. The ISPS Data Archive contacted the author, who traced the error to the removal of the

“bootstrap” function from the broom package for R (Robinson and Hayes, 2019) and rewrote the

bootstrap code using the rsample package instead (Kuhn, Chow and Wickham, 2020). ISPS

staff then confirmed that results reported in the paper could be computationally reproduced

and the ISPS Data Archive released the updated materials.

This case study is an example of unplanned active maintenance. Close working relationships

between archive staff and ISPS researchers helped to facilitate a simple troubleshooting and

update process. Extending the computational reproducibility of this study cost the author

3



perhaps 10 emails and an hour of debugging and recoding and helped avoid future questions

from users.

Computational reproducibility is dynamic

Achieving computational reproducibility at the time data and code are deposited with an archive

or repository is in itself a feat. Even before deposit, computational reproducibility typically

requires that researchers maintain organized data, use version control, and test code, as per

best practices of reproducible research (Bowers, 2011; Christensen, Freese and Miguel, 2019).

Reproducibility is challenged after deposit if users cannot make use or make sense of the files.

Datasets may be damaged at the bit level, and data are often contained in software-dependent

file formats which may become unreadable if the format is incompatible with current computers.

After a period of time, the original software might be altogether unavailable (Peng, 2011)

or restricted (e.g., closed-source) or the ability to use it constrained by a large number of

components and dependencies (Hinsen, 2019; Matthews et al., 2008). Changes to statistical

programing languages can ripple down to the many add-on modules or packages that analysts

rely on. For example, R updated how it generates random samples in 2019. The commands

set.seed() and sample(), and their underlying functions, which would previously have given

the same results across R versions, were updated in R 3.6.0. The default kind of random number

generation was adjusted to allow for greater uniformity of uniform random samples, particularly

in large samples. To use the previous default, R users can call RNGkind(sample.kind =

‘‘Rounding’’) (Smith, 2019). As this example illustrates, poor documentation of software

versions can produce failed attempts to computationally reproduce results of a study after its

initial release.

Beyond software versions, metadata for replication archives should include information regarding

what data were excluded or included in the analysis and how instruments were developed

or calibrated, for example. Especially as conventions change within a field, using human-

and machine-readable strategies to produce high quality code can improve the potential for

computational reproducibility (Katz, 2018). Interpretability is itself dynamic: even if the

documentation makes sense to a contemporary user, it may be less interpretable to users 50

years in the future (or even to the original researcher a few years down the line (Bowers, 2011).)

One commonly offered solution is virtualization or “containerization.” The replication

archive and the computing environment as it existed at the moment of deposit are placed in a

virtual container, thus addressing the versioning problem described above and automating any

4



data manipulation tasks. This approach can be seen in solutions like Docker and Singularity. A

container is essentially a virtual machine running a single particular task. Containers guarantee

that, even if run on different machines, the same results will be reproduced. This solution

has many advantages, but re-opening the container and running the data and code within

can be technically challenging for some users, and it requires virtualized systems which can

themselves become obsolete. More importantly, as Katz (2017) observes, containers “provide

bitwise reproducibility, but aren’t scientifically useful, because as black boxes, you can’t really

remix the contents.” Researchers may want to integrate legacy data with current and future

computation methods in order to reuse, reassess, and reproduce results.

Another approach to extending computational reproducibility is to “run the original software

under emulation on future computers” (Rothenberg, 1999). Emulation enables running legacy

software on modern computers, thus preventing the loss of information and functionality that

inevitably results from new generations of software and hardware. However, emulation can be

computing- and resource-intensive and subject to software licensing challenges. In addition,

emulated systems may not interact with current software and computing environments, limiting

the usefulness of the materials.

Digital archivists often employ strategies to enhance usability including copying and migrating.

For example, the ISPS Data Archive automatically creates a copy of data files in .csv format

in order to preserve a system-independent, nonproprietary format that is likely to be machine

readable in the decades to come. This procedure has some advantages, but some information may

be lost in the new format. Migration involves some curatorial responsibility, more than backing

up a file, or transferring from punch card to tape to disk. It “includes refreshing the media but

also addresses the internal structure of the files so that the information within can be read on

subsequent computer platforms, operating systems, and software” (Green et al., 1999). With

code being instrumental for computational reproducibility, both to extract meaning from data

and as an object worthy of study, more archives and repositories are applying these strategies

to software. Recent recommendations on how to sustain content overtime – that materials need

to be monitored and a combination of strategies deployed – parallel our active maintenance

suggestion (Daigle et al., 2018).

5



Table 1: Computational reproducibility in 20 studies

Author Provided Code Archive Added Code
N = 20 N = 11

No errors 13 (65%) 3 (27%)

Errors which could be resolved 6 (30%) 8 (74%)

Errors which could not be resolved
without further information

3 (15%) 0

Scripts to analyze data not archived 3 (15%) 0

Note: Studies are classified as either running with present day hardware and software, or containing
an error. We additionally note if studies included analysis of data which is not publicly available.

Evaluation of the long-term computational reproducibility

of 20 studies

In order to assess long-term computational reproducibility in the ISPS Data Archive, we attempted

to execute the statistical program files associated with a sample of studies, all of which were

computationally reproducible when they were initially archived. To select the sample, we

compiled a list of all 97 archived studies, excluded three books, then randomly selected 20

studies. The sample included studies archived between 2009 and 2019, with four to 88 files

associated with each study. Files associated with these studies were archived using versions

of Stata (18), R (1), and SPSS (1) available at the time of deposit. All studies could be

characterized as quantitative political science.

Between December 2019 and March 2020, ISPS Data Archive research assistants (RAs)

reviewed the program files using Stata 15, R 3.6.1 and 3.6.2, and SPSS 26. For each study, RAs

reviewed documentation and downloaded all statistical program files with the data necessary

to run them. After adjusting working directories and file names, they attempted to run each

program file and recorded any errors. After troubleshooting, errors were classified based on

whether someone attempting computational reproducibility might be able to overcome them

without substantially updating the script for the statistical analysis, or after receiving help

from the study authors, as summarized in Table 1.

Of the 20 studies reviewed, the statistical program files associated with 13 of them could be

run fully with present day hardware and software. Of the remaining seven studies, a variety of

challenges to computational reproducibility emerged. In six of these studies, program files

produced errors which could be resolved by users with fairly substantial knowledge of the

6



software. Necessary adjustments, such as updating outreg to outreg2 in Stata files written

for version 7 or earlier, are typically trivial for users familiar with the statistical software. In

three of the studies, program files produced errors which could not be resolved by present day

users without further information or documentation. For example, variables which now appear

to be missing would most easily be supplied or explained by study authors. In three of the

twenty studies, program files were written to process data that was not made publicly available

via the archive. It is often necessary to exclude raw data from replication files, so we did not

classify the resulting errors as indicators of failed computational replication.

For eleven studies, those archived prior to July 2013, archive staff added R files at the

time of deposit as part of an effort to convert statistical code to open source formats. Of the

eight instances where the R programs did not run, several included simple typos. However,

emerging challenges to computational reproducibility were generally more difficult to overcome

and underscore the potential hazard of open source software. For example, three relied on

packages that had been removed from CRAN (e.g., Design), or updated in ways that made it

impossible to run the original syntax (e.g., Zelig).

In sum, we find that even in the relatively short period of 10 years, replication materials which

originally allowed for computational reproducibility can break down. Most of the challenges were

encountered in the older studies. Sophisticated users would have little difficulty resolving many

of the errors which appeared, but even some of the user-resolvable errors would have required

substantial troubleshooting and re-coding.

Active Maintenance

Our proposed solution to the problem of overtime degradation in computational reproducibility

is active maintenance. Active maintenance requires monitoring materials and deploying a

combination of strategies drawn from two fields: data preservation and code development.

Data archivists apply principles of digital preservation and curation to ensure files can be

rendered, understood, and reused well into the future. Such “active preservation” is an effort

to mitigate the risks of digital obsolescence and to make digital materials more discoverable.

Strategies include documentation and migrating data files from older formats to current formats.

Proper documentation for computational reproducibility involves describing the research method,

the research artifacts (e.g., metadata about the data provider, software, dependencies, hardware).

Code documentation is especially important if it needs to be recreated in the event of software

challenges. All metadata should be made available in both human and machine-readable

7



formats. These activities are fundamental to enabling computational reproducibility in the

near, medium, and long term.

Software developers are keenly aware of how changes to the computational environment affect

the performance of source code. Continuous integration (CI) is the practice of recompiling

software packages regularly to verify the software runs without errors (Fowler and Foemmel,

2006). Key principles include frequent automatic testing, documenting specifications and dependencies,

and saving all components in one location. The CI process typically concludes at some point as it

cannot be expected that all software will be maintained indefinitely. Adopting basic CI principles

and committing to automatically re-run computational analysis whenever relevant changes are

made to any component of the computational environment can increase the probability that the

code remains available and usable (Beaulieu-Jones and Greene, 2017).

Conclusions

Computational reproducibility is a special kind of knowledge – it offers future analysts a way

to scrutinize and understand scientific studies in a far more intimate and tangible way than

the journal article can provide. But given its dynamic nature, computational reproducibility

is time-variant. As political science and other fields develop shared values and norms around

computational reproducibility, we must recognize that our commitment to this knowledge should

not end on the day we deposit the study in the archive.

We propose active maintenance as a way to ensure long-term computational reproducibility.

As the name implies, active maintenance requires effort. That effort raises two important

questions: is the effort worth it and who should be making the effort?

We think that the answer to the first question – is it worth opening up replication archives

every so often to see if they still run? – will differ from study to study. Because studies differ

in their scientific value, the returns to computational reproducibility will differ accordingly. We

think that at a minimum, important replication archives should be actively maintained, but we

refrain from passing judgment over which studies those are.

The answer to the second question – who should do the maintenance? – also depends on

collective values, priorities, and incentives. Research teams could take the responsibility of

ensuring reproducibility. This puts the onus on authors to adhere to “best practice” guidelines

at the time of the initial deposit, and to keep up with advances in contemporary statistical

computing. It also assumes researchers have the incentives and the resources to do the work

of active maintenance. Active maintenance could also be crowd-sourced to the wider academic

8



community. Much like user contributions to software made on GitHub, one could imagine

the very scholars who use the replication archives in the first place contributing up-to-date

analysis scripts. Many courses have replication project assignments – updating analysis code and

uploading it to the repository could be a fitting capstone to such an assignment. This approach

requires technological and other support. For example, will university libraries preserve all the

research software used in their institutions or outsource this responsibility?

Independent third parties such as the Odum Institute, Curate Science, and ReScience could

also provide active maintenance service on behalf of journals, universities, or scholarly associations.

While a significant step in the direction of improving computational reproducibility, these

services currently only certify computational reproducibility at a point in time, usually upon

deposit in a repository.

Alternatively, the responsibility for active maintenance could fall to archive or repository

staff. Data archives are well-positioned to provide services verifying computational reproducibility

as part of standard curation practice (Peer, Green and Stephenson, 2014). Many archives

already conduct automated bit-level checks and could potentially expand to perform routine

reproducibility checks. A thorough initial review can provide an opportunity to take steps to

increase the potential for long-term reuse. Archives can also enforce policies conducive to active

maintenance, requiring, for example, particular file formats, or specific information in a readme

file.

In light of the dynamic nature of computational reproducibility, we urge the community to

recognize that supporting data and code is an ongoing effort that requires resources, infrastructure,

and standards. Studies that were computationally reproducible on the day they were archived

often cannot be reproduced on modern software and hardware only a few years later – we think

the computational reproducibility of those studies is worth actively maintaining.

9



References

Beaulieu-Jones, Brett K and Casey S Greene. 2017. “Reproducibility of computational workflows

is automated using continuous analysis.” Nature biotechnology 35(4):342–346.

Bowers, Jake. 2011. “Six steps to a better relationship with your future self.”.

URL: https://cpb-us-e1.wpmucdn.com/blogs.rice.edu/dist/d/2418/files/2013/09/tpm v18 n2.pdf

Christensen, Garret, Jeremy Freese and Edward Miguel. 2019. Transparent and reproducible

social science research: How to do open science. University of California Press.

Conway, Paul. 2000. Overview: Rationale for Digitization and Preservation. Northeast

Document Conservation Center.

Coppock, Alexander. 2017. “Did shy Trump supporters bias the 2016 polls? Evidence from a

nationally-representative list experiment.” Statistics, Politics and Policy 8(1):29–40.

Daigle, Bradley, Karen Cariani, Carol Kussmann, Nathan Tallman and Lauren Work. 2018.

“Levels of Digital Preservation.”.

URL: https://ndsa.org/publications/levels-of-digital-preservation/

Fowler, Martin and Matthew Foemmel. 2006. “Continuous integration.”.

URL: https://martinfowler.com/articles/continuousIntegration.html

Gertler, Aaron L and John G Bullock. 2017. “Reference rot: An emerging threat to transparency

in political science.” PS, Political Science & Politics 50(1):166.

Green, A G, J A Dionne, M Dennis, M J Dennis and Digital Library Federation. 1999. Preserving

the Whole: A Two-track Approach to Rescuing Social Science Data and Metadata. Digital

Library Federation.

Hinsen, Konrad. 2019. “Dealing with software collapse.” Computing in Science & Engineering

21(3):104–108.

Katz, Daniel. 2017. “Is software reproducibility possible and practical?”.

URL: https://danielskatzblog.wordpress.com/2017/02/07/is-software-reproducibility-possible-and-practical/

Katz, Daniel. 2018. “Fundamentals of Software Sustainability.”.

URL: https://danielskatzblog.wordpress.com/2018/09/26/fundamentals-of-software-sustainability/

10



Kuhn, Max, Fanny Chow and Hadley Wickham. 2020. rsample: General Resampling

Infrastructure.

URL: https://cran.r-project.org/package=rsample

Lupia, Arthur and Colin Elman. 2014. “Openness in Political Science: Data Access and Research

Transparency: Introduction.” PS: Political Science & Politics 47(1):19–42.

Matthews, Brian, Brian McIlwrath, David Giaretta and Esther Conway. 2008. The significant

properties of software: A study. Technical report.

URL: http://purl.org/net/epubs/manifestation/9506/SignificantPropertiesofSoftware.pdf

National Academies of Sciences Engineering and Medicine. 2019. Reproducibility and

Replicability in Science. Washington, DC: The National Academies Press.

URL: https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science

Peer, Limor and Ann Green. 2012. “Building an Open Data Repository for a Specialized

Research Community: Process, Challenges and Lessons.” International Journal of Digital

Curation 7(1):151–162.

Peer, Limor, Ann Green and Elizabeth Stephenson. 2014. “Committing to Data Quality

Review.” International Journal of Digital Curation 9(1):263–291.

Peng, Roger D. 2011. “Reproducible Research in Computational Science.” Science

334(6060):1226–1227.

URL: https://science.sciencemag.org/content/334/6060/1226

Robinson, David and Alex Hayes. 2019. broom: Convert Statistical Analysis Objects into Tidy

Tibbles.

URL: https://cran.r-project.org/package=broom

Rothenberg, Jeff. 1999. Avoiding Technological Quicksand: Finding a Viable Technical

Foundation for Digital Preservation. A Report to the Council on Library and Information

Resources. ERIC.

URL: https://www.clir.org/pubs/reports/rothenberg/contents/

Smith, David. 2019. “What’s new in R 3.6.0.”.

URL: https://blog.revolutionanalytics.com/2019/05/whats-new-in-r-360.html

11


