
Note on testing for heterogeneity with grf

Alex Coppock and Molly Offer-Westort

2025-06-19

This note summarizes an email exchange between the two of us on how to use the grf package to assess
treatment effect heterogeneity that we thought could be useful more broadly. In short, Alex’s naive applica-
tion of a “simple” test for heterogeneity wildly over-rejected the null, so he asked Molly for help, who fixed
the problem.

The setting is a two-arm randomized experiment with many covariates. We’re going to use the grf package
to fit a generalized random forest model, which will generate predictions of the conditional average treatment
effect for every unique covariate profile in the dataset. A relatively straightforward test against the null hy-
pothesis of effect homogeneity (recommended here: https://grf-labs.github.io/grf/articles/diagnostics.html)
is a T-test that compares the average value of the above median estimates to the below median estimate.

Alex’s code below follows the procedures and code described in Athey and Wager (2019):

A first, simple approach to testing for heterogeneity involves grouping observations according to
whether their out-of-bag CATE estimates are above or below the median CATE estimate, and
then estimating average treatment effects in these two subgroups separately using the doubly
robust approach (8).

Although the authors note some limitations to this approach:

This procedure is somewhat heuristic, as the “high” and “low” subgroups are not independent
of the scores Γ̂i used to estimate the within-group effects; however, the subgroup definition does
not directly depend on the outcomes or treatments (Yi, Wi) themselves, and it appears that this
approach can provide at least qualitative insights about the strength of heterogeneity.

Here’s a simulation (written in DeclareDesign) in which the outcome is correlated with the covariates, but
the treatment effect is constant for all units.

library(grf)
library(tidyverse)
library(DeclareDesign)

this part of the design will stay the same
N <- 1000
design_stub <-

declare_model(
N = N,
X1 = rbinom(N, 1, 0.5),
X2 = rbinom(N, 1, 0.5),
X3 = rbinom(N, 1, 0.5),
X4 = rbinom(N, 1, 0.5),

1

https://grf-labs.github.io/grf/articles/diagnostics.html

X5 = rbinom(N, 1, 0.5),
U = rnorm(N),
potential_outcomes(

Y ~ 0.1 * X1 + 0.2 * X2 + 0.3 * X3 + 0.4 * X4 + 0.5 * X5 + U
)

) +
declare_assignment(Z = complete_ra(N)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z))

Here is Alex’s naive approach to implementing the test:

grf_tester <- function(data) {
fit <- with(data, causal_forest(

X = cbind(X1, X2, X3, X4, X5),
Y = Y,
W = Z,
W.hat = 0.5

))
preds <- predict(fit)$predictions
high.effect <- preds > median(preds)
ate.high <- average_treatment_effect(fit, subset = high.effect)
ate.low <- average_treatment_effect(fit, subset = !high.effect)
dif <- ate.high[1] - ate.low[1]
dif.se <- sqrt(ate.high[2]ˆ2 + ate.low[2]ˆ2)

tibble(p.value = 2 * (1 - pnorm(abs(dif / dif.se))))
}

design_1 <- design_stub +
declare_estimator(handler = grf_tester)

When we simulate, we get a figure that shows serious over-rejection of the true null hypothesis that actually
gets worse as sample size grows.

simulations_1 <-
design_1 |>
redesign(N = c(500, 1000, 2000, 5000)) |>
simulate_designs(sims = 500)

2

0.0

0.1

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000
Sample Size

F
re

qu
en

cy
 o

f r
ej

ec
tin

g
(t

ru
e)

 n
ul

l o
f e

ffe
ct

 h
om

og
en

ei
ty

What is happening, grf is giving significant heterogeneity all the time!!

Molly’s solution

Molly wrote back:

I thought this was going to be easier, but the problem is not trivial!

Given that there is no relationship of the treatment with response, the CATEs should be centered around
zero. While the estimates are honest, if you condition post estimation on the honest estimates that are above
median, these estimates will more frequently be statistically distinguishable from estimates that are below
median. What you need to diagnose is if the model is applied to a hold-out sample, if those differences will
still hold.

However, even doing a cross-fitting approach where I fit the models on one fold, used that model to predict
ranks on another, and then used the model from the first fold to get doubly robust scores for estimation
in the second fold, I was still getting inflated rejection. I think because the means model used for ranking
contaminates the DR scores used for estimation, even though they have a residual bias correction.

I ended up with a procedure where you need to make sure the data + model used for ranking is completely
separate from the data + model used for estimation.

grf_tester_improved <-
function(data) {

Create folds
folds <- sample(rep(1:2, length.out = nrow(data)))
idxA <- which(folds == 1)
idxB <- which(folds == 2)

3

dataA <- data[idxA,]
dataB <- data[idxB,]

Train on fold A
fitA <- with(

dataA,
causal_forest(

X = cbind(X1, X2, X3, X4, X5),
Y = Y,
W = Z,
W.hat = 0.5

)
)

Train on fold B
fitB <- with(

dataB,
causal_forest(

X = cbind(X1, X2, X3, X4, X5),
Y = Y,
W = Z,
W.hat = 0.5

)
)

Using model B, predict on fold A for subgroups
predsA <- predict(

fitB,
newdata = with(dataA, cbind(X1, X2, X3, X4, X5))

)$predictions
high.effectA <- predsA > median(predsA)

Using model A, predict on fold B for subgroups
predsB <- predict(

fitA,
newdata = with(dataB, cbind(X1, X2, X3, X4, X5))

)$predictions
high.effectB <- predsB > median(predsB)

Estimate treatment effects using within-fold models
ate.highA <- average_treatment_effect(fitA, subset = high.effectA)
ate.lowA <- average_treatment_effect(fitA, subset = !high.effectA)
difA <- ate.highA[1] - ate.lowA[1]
dif.seA <- sqrt(ate.highA[2]ˆ2 + ate.lowA[2]ˆ2)

ate.highB <- average_treatment_effect(fitB, subset = high.effectB)
ate.lowB <- average_treatment_effect(fitB, subset = !high.effectB)
difB <- ate.highB[1] - ate.lowB[1]
dif.seB <- sqrt(ate.highB[2]ˆ2 + ate.lowB[2]ˆ2)

tibble(
p.valueA = 2*(1 - pnorm(abs(difA / dif.seA))),
p.valueB = 2*(1 - pnorm(abs(difB / dif.seB)))

4

)
}

Now we combine that function with the design stub, re-simulate, and it works as described!

design_2 <- design_stub +
declare_estimator(handler = grf_tester_improved)

simulations_2 <-
design_2 |>
redesign(N = c(500, 1000, 2000, 5000)) |>
simulate_designs(sims = 500)

0.0

0.1

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000
Sample Size

F
re

qu
en

cy
 o

f r
ej

ec
tin

g
(t

ru
e)

 n
ul

l o
f e

ffe
ct

 h
om

og
en

ei
ty

Balance is restored

Athey, Susan, and Stefan Wager. 2019. “Estimating Treatment Effects with Causal Forests: An Application.”
Observational Studies 5 (2): 37–51.

5

	Molly's solution

